248 research outputs found

    The efficacy of iron chelator regimes in reducing cardiac and hepatic iron in patients with thalassaemia major: a clinical observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Available iron chelation regimes in thalassaemia may achieve different changes in cardiac and hepatic iron as assessed by MR. The aim of this study was to assess the efficacy of four available iron chelator regimes in 232 thalassaemia major patients by assessing the rate of change in repeated measurements of cardiac and hepatic MR.</p> <p>Results</p> <p>For the heart, deferiprone and the combination of deferiprone and deferoxamine significantly reduced cardiac iron at all levels of iron loading. As patients were on deferasirox for a shorter time, a second analysis ("Initial interval analysis") assessing the change between the first two recorded MR results for both cardiac and hepatic iron (minimum interval 12 months) was made. Combination therapy achieved the most rapid fall in cardiac iron load at all levels and deferiprone alone was significantly effective with moderate and mild iron load. In the liver, deferasirox effected significant falls in iron load and combination therapy resulted in the most rapid decline.</p> <p>Conclusion</p> <p>With the knowledge of the efficacy of the different available regimes and the specific iron load in the heart and the liver, appropriate tailoring of chelation therapy should allow clearance of iron. Combination therapy is best in reducing both cardiac and hepatic iron, while monotherapy with deferiprone or deferasirox are effective in the heart and liver respectively. The outcomes of this study may be useful to physicians as to the chelation they should prescribe according to the levels of iron load found in the heart and liver by MR.</p

    Evaluation of nutritional status in children with refractory epilepsy

    Get PDF
    BACKGROUND: children affected by refractory epilepsy could be at risk of malnutrition because of feeding difficulties (anorexia, chewing, swallowing difficulties or vomiting) and chronic use of anticonvulsants, which may affect food intake and energy metabolism. Moreover, their energy requirement may be changed as their disabilities would impede normal daily activities. The aim of the present study was to evaluate nutritional status, energy metabolism and food intake in children with refractory epilepsy. METHODS: 17 children with refractory epilepsy (13 boys and 4 girls; mean age 9 ± 3,2 years; Body Mass Index 15,7 ± 3,6) underwent an anthropometric assessment, body composition evaluation by dual-energy X-ray absorptiometry, detailed dietetic survey and measurement of resting energy expenditure by indirect calorimetry. Weight-for-age, height-for-age (stunting) and weight-for-height (wasting) were estimated compared to those of a reference population of the same age. RESULTS: 40% of children were malnourished and 24% were wasted. The nutritional status was worse in the more disabled children. Dietary intake resulted unbalanced (18%, 39%, 43% of total daily energy intake derived respectively from protein, lipid and carbohydrate). Adequacy index [nutrient daily intake/recommended allowance (RDA) × 100] was < 60% for calcium iron and zinc. CONCLUSION: many children with refractory epilepsy would benefit from individual nutritional assessment and management as part of their overall care

    Calibration of myocardial T2 and T1 against iron concentration.

    Get PDF
    BACKGROUND: The assessment of myocardial iron using T2* cardiovascular magnetic resonance (CMR) has been validated and calibrated, and is in clinical use. However, there is very limited data assessing the relaxation parameters T1 and T2 for measurement of human myocardial iron. METHODS: Twelve hearts were examined from transfusion-dependent patients: 11 with end-stage heart failure, either following death (n=7) or cardiac transplantation (n=4), and 1 heart from a patient who died from a stroke with no cardiac iron loading. Ex-vivo R1 and R2 measurements (R1=1/T1 and R2=1/T2) at 1.5 Tesla were compared with myocardial iron concentration measured using inductively coupled plasma atomic emission spectroscopy. RESULTS: From a single myocardial slice in formalin which was repeatedly examined, a modest decrease in T2 was observed with time, from mean (± SD) 23.7 ± 0.93 ms at baseline (13 days after death and formalin fixation) to 18.5 ± 1.41 ms at day 566 (p<0.001). Raw T2 values were therefore adjusted to correct for this fall over time. Myocardial R2 was correlated with iron concentration [Fe] (R2 0.566, p<0.001), but the correlation was stronger between LnR2 and Ln[Fe] (R2 0.790, p<0.001). The relation was [Fe] = 5081•(T2)-2.22 between T2 (ms) and myocardial iron (mg/g dry weight). Analysis of T1 proved challenging with a dichotomous distribution of T1, with very short T1 (mean 72.3 ± 25.8 ms) that was independent of iron concentration in all hearts stored in formalin for greater than 12 months. In the remaining hearts stored for <10 weeks prior to scanning, LnR1 and iron concentration were correlated but with marked scatter (R2 0.517, p<0.001). A linear relationship was present between T1 and T2 in the hearts stored for a short period (R2 0.657, p<0.001). CONCLUSION: Myocardial T2 correlates well with myocardial iron concentration, which raises the possibility that T2 may provide additive information to T2* for patients with myocardial siderosis. However, ex-vivo T1 measurements are less reliable due to the severe chemical effects of formalin on T1 shortening, and therefore T1 calibration may only be practical from in-vivo human studies

    Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan.

    Get PDF
    BACKGROUND: There is a need to standardise non-invasive measurements of liver iron concentrations (LIC) so clear inferences can be drawn about body iron levels that are associated with hepatic and extra-hepatic complications of iron overload. Since the first demonstration of an inverse relationship between biopsy LIC and liver magnetic resonance (MR) using a proof-of-concept T2* sequence, MR technology has advanced dramatically with a shorter minimum echo-time, closer inter-echo spacing and constant repetition time. These important advances allow more accurate calculation of liver T2* especially in patients with high LIC. METHODS: Here, we used an optimised liver T2* sequence calibrated against 50 liver biopsy samples on 25 patients with transfusional haemosiderosis using ordinary least squares linear regression, and assessed the method reproducibility in 96 scans over an LIC range up to 42 mg/g dry weight (dw) using Bland-Altman plots. Using mixed model linear regression we compared the new T2*-LIC with R2-LIC (Ferriscan) on 92 scans in 54 patients with transfusional haemosiderosis and examined method agreement using Bland-Altman approach. RESULTS: Strong linear correlation between ln(T2*) and ln(LIC) led to the calibration equation LIC = 31.94(T2*)-1.014. This yielded LIC values approximately 2.2 times higher than the proof-of-concept T2* method. Comparing this new T2*-LIC with the R2-LIC (Ferriscan) technique in 92 scans, we observed a close relationship between the two methods for values up to 10 mg/g dw, however the method agreement was poor. CONCLUSIONS: New calibration of T2* against liver biopsy estimates LIC in a reproducible way, correcting the proof-of-concept calibration by 2.2 times. Due to poor agreement, both methods should be used separately to diagnose or rule out liver iron overload in patients with increased ferritin

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    The relationship between cardiac and liver iron evaluated by MR imaging in haematological malignancies and chronic liver disease

    Get PDF
    Although iron overload is clinically significant, only limited data have been published on iron overload in haematological diseases. We investigated cardiac and liver iron accumulation by magnetic resonance imaging (MRI) in a cohort of 87 subjects who did not receive chelation, including 59 haematological patients. M-HIC (MRI-based hepatic iron concentration, normal values <36 μmol/g) is a non-invasive, liver biopsy-calibrated method to analyse iron concentration. This method, calibrated to R2 (transverse relaxation rate), was used as a reference standard (M-HIC(R2)). Transfusions and ferritin were evaluated. Mean M-HIC(R2) and cardiac R* of all patients were 142 μmol/g (95% CI, 114–170) and 36.4 1/s (95% CI, 34.2–38.5), respectively. M-HIC(R2) was higher in haematological patients than in patients with chronic liver disease or normal controls (P<0.001). Clearly elevated cardiac R2* was found in two myelodysplastic syndrome (MDS) patients with severe liver iron overload. A poor correlation was found between liver and cardiac iron (n=82, r=0.322, P=0.003), in contrast to a stronger correlation in MDS (n=7, r=0.905, P=0.005). In addition to transfusions, MDS seemed to be an independent factor in iron accumulation. In conclusion, the risk for cardiac iron overload in haematological diseases other than MDS is very low, despite the frequently found liver iron overload

    Complex Consequences of Herbivory and Interplant Cues in Three Annual Plants

    Get PDF
    Information exchange (or signaling) between plants following herbivore damage has recently been shown to affect plant responses to herbivory in relatively simple natural systems. In a large, manipulative field study using three annual plant species (Achyrachaena mollis, Lupinus nanus, and Sinapis arvensis), we tested whether experimental damage to a neighboring conspecific affected a plant's lifetime fitness and interactions with herbivores. By manipulating relatedness between plants, we assessed whether genetic relatedness of neighboring individuals influenced the outcome of having a damaged neighbor. Additionally, in laboratory feeding assays, we assessed whether damage to a neighboring plant specifically affected palatability to a generalist herbivore and, for S. arvensis, a specialist herbivore. Our study suggested a high level of contingency in the outcomes of plant signaling. For example, in the field, damaging a neighbor resulted in greater herbivory to A. mollis, but only when the damaged neighbor was a close relative. Similarly, in laboratory trials, the palatability of S. arvensis to a generalist herbivore increased after the plant was exposed to a damaged neighbor, while palatability to a specialist herbivore decreased. Across all species, damage to a neighbor resulted in decreased lifetime fitness, but only if neighbors were closely related. These results suggest that the outcomes of plant signaling within multi-species neighborhoods may be far more context-specific than has been previously shown. In particular, our study shows that herbivore interactions and signaling between plants are contingent on the genetic relationship between neighboring plants. Many factors affect the outcomes of plant signaling, and studies that clarify these factors will be necessary in order to assess the role of plant information exchange about herbivory in natural systems

    Beta-thalassemia

    Get PDF
    Beta-thalassemias are a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. The total annual incidence of symptomatic individuals is estimated at 1 in 100,000 throughout the world and 1 in 10,000 people in the European Union. Three main forms have been described: thalassemia major, thalassemia intermedia and thalassemia minor. Individuals with thalassemia major usually present within the first two years of life with severe anemia, requiring regular red blood cell (RBC) transfusions. Findings in untreated or poorly transfused individuals with thalassemia major, as seen in some developing countries, are growth retardation, pallor, jaundice, poor musculature, hepatosplenomegaly, leg ulcers, development of masses from extramedullary hematopoiesis, and skeletal changes that result from expansion of the bone marrow. Regular transfusion therapy leads to iron overload-related complications including endocrine complication (growth retardation, failure of sexual maturation, diabetes mellitus, and insufficiency of the parathyroid, thyroid, pituitary, and less commonly, adrenal glands), dilated myocardiopathy, liver fibrosis and cirrhosis). Patients with thalassemia intermedia present later in life with moderate anemia and do not require regular transfusions. Main clinical features in these patients are hypertrophy of erythroid marrow with medullary and extramedullary hematopoiesis and its complications (osteoporosis, masses of erythropoietic tissue that primarily affect the spleen, liver, lymph nodes, chest and spine, and bone deformities and typical facial changes), gallstones, painful leg ulcers and increased predisposition to thrombosis. Thalassemia minor is clinically asymptomatic but some subjects may have moderate anemia. Beta-thalassemias are caused by point mutations or, more rarely, deletions in the beta globin gene on chromosome 11, leading to reduced (beta+) or absent (beta0) synthesis of the beta chains of hemoglobin (Hb). Transmission is autosomal recessive; however, dominant mutations have also been reported. Diagnosis of thalassemia is based on hematologic and molecular genetic testing. Differential diagnosis is usually straightforward but may include genetic sideroblastic anemias, congenital dyserythropoietic anemias, and other conditions with high levels of HbF (such as juvenile myelomonocytic leukemia and aplastic anemia). Genetic counseling is recommended and prenatal diagnosis may be offered. Treatment of thalassemia major includes regular RBC transfusions, iron chelation and management of secondary complications of iron overload. In some circumstances, spleen removal may be required. Bone marrow transplantation remains the only definitive cure currently available. Individuals with thalassemia intermedia may require splenectomy, folic acid supplementation, treatment of extramedullary erythropoietic masses and leg ulcers, prevention and therapy of thromboembolic events. Prognosis for individuals with beta-thalassemia has improved substantially in the last 20 years following recent medical advances in transfusion, iron chelation and bone marrow transplantation therapy. However, cardiac disease remains the main cause of death in patients with iron overload

    The Association of PNPLA3 Variants with Liver Enzymes in Childhood Obesity Is Driven by the Interaction with Abdominal Fat

    Get PDF
    BACKGROUND AND AIMS: A polymorphism in adiponutrin/patatin-like phospholipase-3 gene (PNPLA3), rs738409 C->G, encoding for the I148M variant, is the strongest genetic determinant of liver fat and ALT levels in adulthood and childhood obesity. Aims of this study were i) to analyse in a large group of obese children the role of the interaction of not-genetic factors such as BMI, waist circumference (W/Hr) and insulin resistance (HOMA-IR) in exposing the association between the I148M polymorphism and ALT levels and ii) to stratify the individual risk of these children to have liver injury on the basis of this gene-environment interaction. METHODS: 1048 Italian obese children were investigated. Anthropometric, clinical and metabolic data were collected and the PNPLA3 I148M variant genotyped. RESULTS: Children carrying the 148M allele showed higher ALT and AST levels (p = 0.000006 and p = 0.0002, respectively). Relationships between BMI-SDS, HOMA-IR and W/Hr with ALT were analysed in function of the different PNPLA3 genotypes. Children 148M homozygous showed a stronger correlation between ALT and W/Hr than those carrying the other genotypes (p: 0.0045) and, therefore, 148M homozygotes with high extent of abdominal fat (W/Hr above 0.62) had the highest OR (4.9, 95% C. I. 3.2-7.8, p = 0.00001) to develop pathologic ALT. CONCLUSIONS: We have i) showed for the first time that the magnitude of the association of PNPLA3 with liver enzymes is driven by the size of abdominal fat and ii) stratified the individual risk to develop liver damage on the basis of the interaction between the PNPLA3 genotype and abdominal fat
    corecore