69 research outputs found

    Bacterial activity in cystic fibrosis lung infections

    Get PDF
    BACKGROUND: Chronic lung infections are the primary cause of morbidity and mortality in Cystic Fibrosis (CF) patients. Recent molecular biological based studies have identified a surprisingly wide range of hitherto unreported bacterial species in the lungs of CF patients. The aim of this study was to determine whether the species present were active and, as such, worthy of further investigation as potential pathogens. METHODS: Terminal Restriction Fragment Length Polymorphism (T-RFLP) profiles were generated from PCR products amplified from 16S rDNA and Reverse Transcription Terminal Restriction Fragment Length Polymorphism (RT-T-RFLP) profiles, a marker of metabolic activity, were generated from PCR products amplified from 16S rRNA, both extracted from the same CF sputum sample. To test the level of activity of these bacteria, T-RFLP profiles were compared to RT-T-RFLP profiles. RESULTS: Samples from 17 individuals were studied. Parallel analyses identified a total of 706 individual T-RF and RT-T-RF bands in this sample set. 323 bands were detected by T-RFLP and 383 bands were detected by RT-T-RFLP (statistically significant; P ≤ 0.001). For the group as a whole, 145 bands were detected in a T-RFLP profile alone, suggesting metabolically inactive bacteria. 205 bands were detected in an RT-T-RFLP profile alone and 178 bands were detected in both, suggesting a significant degree of metabolic activity. Although Pseudomonas aeruginosa was present and active in many patients, a low occurrence of other species traditionally considered to be key CF pathogens was detected. T-RFLP profiles obtained for induced sputum samples provided by healthy individuals without CF formed a separate cluster indicating a low level of similarity to those from CF patients. CONCLUSION: These results indicate that a high proportion of the bacterial species detected in the sputum from all of the CF patients in the study are active. The widespread activity of bacterial species in these samples emphasizes the potential importance of these previously unrecognized species within the CF lung

    Aggregation of αSynuclein promotes progressive in vivo neurotoxicity in adult rat dopaminergic neurons

    Get PDF
    Fibrillar αSynuclein is the major constituent of Lewy bodies and Lewy neurites, the protein deposits characteristic for Parkinson’s disease (PD). Multiplications of the αSynuclein gene, as well as point mutations cause familial PD. However, the exact role of αSynuclein in neurodegeneration remains uncertain. Recent research in invertebrates has suggested that oligomeric rather than fibrillizing αSynuclein mediates neurotoxicity. To investigate the impact of αSynuclein aggregation on the progression of neurodegeneration, we expressed variants with different fibrillation propensities in the rat substantia nigra (SN) by means of recombinant adeno-associated viral (AAV) vectors. The formation of proteinase K-resistant αSynuclein aggregates was correlated to the loss of nigral dopaminergic (DA) neurons and striatal fibers. Expression of two prefibrillar, structure-based design mutants of αSynuclein (i.e., A56P and A30P/A56P/A76P) resulted in less aggregate formation in nigral DA neurons as compared to human wild-type (WT) or the inherited A30P mutation. However, only the αSynuclein variants capable of forming fibrils (WT/A30P), but not the oligomeric αSynuclein species induced a sustained progressive loss of adult nigral DA neurons. These results demonstrate that divergent modes of αSynuclein neurotoxicity exist in invertebrate and mammalian DA neurons in vivo and suggest that fibrillation of αSynuclein promotes the progressive degeneration of nigral DA neurons as found in PD patients

    Molecular phylogenetics and temporal diversification in the genus Aeromonas based on the sequences of five housekeeping genes

    Get PDF
    Several approaches have been developed to estimate both the relative and absolute rates of speciation and extinction within clades based on molecular phylogenetic reconstructions of evolutionary relationships, according to an underlying model of diversification. However, the macroevolutionary models established for eukaryotes have scarcely been used with prokaryotes. We have investigated the rate and pattern of cladogenesis in the genus Aeromonas (γ-Proteobacteria, Proteobacteria, Bacteria) using the sequences of five housekeeping genes and an uncorrelated relaxed-clock approach. To our knowledge, until now this analysis has never been applied to all the species described in a bacterial genus and thus opens up the possibility of establishing models of speciation from sequence data commonly used in phylogenetic studies of prokaryotes. Our results suggest that the genus Aeromonas began to diverge between 248 and 266 million years ago, exhibiting a constant divergence rate through the Phanerozoic, which could be described as a pure birth process

    Identification of ejaculated proteins in the house mouse (Mus domesticus) via isotopic labeling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Seminal fluid plays an important role in successful fertilization, but knowledge of the full suite of proteins transferred from males to females during copulation is incomplete. The list of ejaculated proteins remains particularly scant in one of the best-studied mammalian systems, the house mouse (<it>Mus domesticus</it>), where artificial ejaculation techniques have proven inadequate. Here we investigate an alternative method for identifying ejaculated proteins, by isotopically labeling females with <sup>15</sup>N and then mating them to unlabeled, vasectomized males. Proteins were then isolated from mated females and identified using mass spectrometry. In addition to gaining insights into possible functions and fates of ejaculated proteins, our study serves as proof of concept that isotopic labeling is a powerful means to study reproductive proteins.</p> <p>Results</p> <p>We identified 69 male-derived proteins from the female reproductive tract following copulation. More than a third of all spectra detected mapped to just seven genes known to be structurally important in the formation of the copulatory plug, a hard coagulum that forms shortly after mating. Seminal fluid is significantly enriched for proteins that function in protection from oxidative stress and endopeptidase inhibition. Females, on the other hand, produce endopeptidases in response to mating. The 69 ejaculated proteins evolve significantly more rapidly than other proteins that we previously identified directly from dissection of the male reproductive tract.</p> <p>Conclusion</p> <p>Our study attempts to comprehensively identify the proteins transferred from males to females during mating, expanding the application of isotopic labeling to mammalian reproductive genomics. This technique opens the way to the targeted monitoring of the fate of ejaculated proteins as they incubate in the female reproductive tract.</p

    The Effect of Complex Interventions on Depression and Anxiety in Chronic Obstructive Pulmonary Disease: Systematic Review and Meta-Analysis

    Get PDF
    Background Depression and anxiety are very common in people with chronic obstructive pulmonary disease (COPD) and are associated with excess morbidity and mortality. Patients prefer non-drug treatments and clinical guidelines promote non-pharmacological interventions as first line therapy for depression and anxiety in people with long term conditions. However the comparative effectiveness of psychological and lifestyle interventions among COPD patients is not known. We assessed whether complex psychological and/or lifestyle interventions are effective in reducing symptoms of anxiety and depression in patients with COPD. We then determined what types of psychological and lifestyle interventions are most effective. Methods and Findings Systematic review of randomised controlled trials of psychological and/or lifestyle interventions for adults with COPD that measured symptoms of depression and/or anxiety. CENTRAL, Medline, Embase, PsychINFO, CINAHL, ISI Web of Science and Scopus were searched up to April 2012. Meta-analyses using random effects models were undertaken to estimate the average effect of interventions on depression and anxiety. Thirty independent comparisons from 29 randomised controlled trials (n = 2063) were included in the meta-analysis. Overall, psychological and/or lifestyle interventions were associated with small reductions in symptoms of depression (standardised mean difference −0.28, 95% confidence interval −0.41 to −0.14) and anxiety (standardised mean difference −0.23, 95% confidence interval −0.38 to −0.09). Multi-component exercise training was the only intervention subgroup associated with significant treatment effects for depression (standardised mean difference −0.47, 95% confidence interval −0.66 to −0.28), and for anxiety (standardised mean difference −0.45, 95% confidence interval −0.71 to −0.18). Conclusions Complex psychological and/or lifestyle interventions that include an exercise component significantly improve symptoms of depression and anxiety in people with COPD. Furthermore, multi-component exercise training effectively reduces symptoms of anxiety and depression in all people with COPD regardless of severity of depression or anxiety, highlighting the importance of promoting physical activity in this population

    Repurposing of approved cardiovascular drugs

    Full text link
    corecore