572 research outputs found

    Study of forward and backward modes in double-sided dielectric-filled corrugated waveguides

    Get PDF
    This work studies the propagation characteristics of a rectangular waveguide with aligned/ misaligned double-sided dielectric-filled metallic corrugations. Two modes are found to propagate in the proposed double-sided configuration below the hollow-waveguide cutoff frequency: a quasi resonant mode and a backward mode. This is in contrast to the single-sided configuration, which only allows for backward propagation. Moreover, the double-sided configuration can be of interest for waveguide miniaturization on account of the broader band of its backward mode. The width of the stopband between the quasi-resonant and backward modes can be controlled by the misalignment of the top and bottom corrugations, being null for the glide-symmetric case. The previous study is complemented with numerical results showing the impact of the height of the corrugations, as well as the filling dielectric permittivity, on the bandwidth and location of the appearing negative effective-permeability band. The multi-modal transmission-matrix method has also been employed to estimate the rejection level and material losses in the structure and to determine which port modes are associated with the quasi-resonant and backward modes. Finally, it is shown that glide symmetry can advantageously be used to reduce the dispersion and broadens the operating band of the modesEuropean Union COST Action SyMat CA18223Ministerio de Ciencia, Innovación y Universidades TEC2017-84724-

    Effect of Dendritic Side Groups on the Mobility of Modified Poly(epichlorohydrin) Copolymers

    Get PDF
    [EN] The macromolecular dynamics of dendronized copolymer membranes (PECHs), obtained by chemical modification of poly(epichlorohydrin) with the dendron 3,4,5-tris[4-(n-dodecan-1-yloxy)benzyloxy] benzoate, was investigated. In response to a thermal treatment during membrane preparation, these copolymers show an ability to change their shape, achieve orientation, and slightly crystallize, which was also observed by CP-MAS NMR, XRD, and DSC. The phenomenon was deeply analyzed by dielectric thermal analysis. The dielectric spectra show the influence of several factors such as the number of dendritic side groups, the orientation, their self-assembling dendrons, and the molecular mobility. The dielectric spectra present a sub-Tg dielectric relaxation, labelled as gamma, associated with the mobility of the benzyloxy substituent of the dendritic group. This mobility is not related to the percentage of these lateral chains but is somewhat hindered by the orientation of the dendritic groups. Unlike other less complex polymers, the crystallization was dismantled before the appearance of the glass transition (alpha(Tg)). Only after that, clearing transition (alpha(Clear)) can be observed. The PECHs were flexible and offered a high free volume, despite presenting a high degree of modifications. However, the molecular mobility is not independent in each phase and the self-assembling dendrons can be eventually fine-tuned according to the percentage of grafted groups.This research was funded by the Spanish Ministry of Science, Innovation and Universities, grant POLYDECARBOCELL (ENE2017-86711-C3-1-R, ENE2017-86711-C3-3-R).Teruel Juanes, R.; Pascual-Jose, B.; Graf, R.; Reina, JA.; Giamberini, M.; Ribes-Greus, A. (2021). Effect of Dendritic Side Groups on the Mobility of Modified Poly(epichlorohydrin) Copolymers. Polymers. 13(12):1-19. https://doi.org/10.3390/polym13121961119131

    Measurement of the broadband complex permittivity of soils in the frequency domain with a low-cost Vector Network Analyzer and an Open-Ended coaxial probe

    Get PDF
    The performance of a handheld Vector Network Analyzer (VNA), the nanoVNA, a low-cost, open-source instrument, was evaluated. The instrument measures the complex permittivity of dielectric media from 1-port reflection parameters in the 1 – 900 MHz bandwidth. We manufactured an open-ended coaxial probe using a SMA-N coaxial adapter to perform dielectric measurements. The accuracy of the nanoVNA was comparable to that of a commercial VNA between 1 and 500 MHz according to tests in reference organic liquids, while a lack of stability was found beyond 700 MHz. The self-manufactured open-ended coaxial probe was subjected to a Finite Element Method (FEM) analysis and its electromagnetic (EM) field penetration depth was determined to be 1.5 mm at 100 MHz, being reduced to 1.3 at 900 MHz and thus demonstrating a frequency-dependent support volume. The broadband complex permittivity of three mineral soils of varied textures was obtained for a range of bulk densities and water contents from dry to water-saturated conditions. The dielectric response of the soils approximated the well-known Topp et al. (1980) equation at high frequencies. At lower frequency however, higher permittivities were exhibited due to dielectric dispersion, which emphasizes the importance of EM-based soil moisture sensor operating frequency when considering sensor calibration or comparing the response of different sensors.This research was funded by Agencia Estatal de Investigación (AEI), project numbers: AGL2016-77282-C3-3-R and PID2019-106226-C22 AEI/https:///https://doi.org/10.13039/501100011033 | Ministerio de Educación y Formación Profesional, grant numbers: FPU17/05155 and FPU19/00020. Funding for David A. Robinson was provided by a Natural Environment Research Council (NERC) award number NE/R016429/1 as part of the UK–ScaPE Programme Delivering National Capability. We also acknowledge funding from the Polish National Agency for Academic Exchange, grant number: PPI/APM/2018/1/00048/U/001. The authors wish to thank Agencia Estatal de Investigación (AEI), Ministerio de Educación y Formación Profesional, Natural Environment Research Council (NERC) and Polish National Agency for Academic Exchange (NAWA) for the funding provided. The authors also wish to thank Juan Antonio Albaladejo for his help in machining the experimental OE coaxial probe

    Dielectric spectroscopy and application of mixing models describing dielectric dispersion in clay minerals and clayey soils

    Get PDF
    The number of sensors, ground-based and remote, exploiting the relationship between soil dielectric response and soil water content continues to grow. Empirical expressions for this relationship generally work well in coarse-textured soils but can break down for high-surface area and intricate materials such as clayey soils. Dielectric mixing models are helpful for exploring mechanisms and developing new understanding of the dielectric response in porous media that do not conform to a simple empirical approach, such as clayey soils. Here, we explore the dielectric response of clay minerals and clayey soils using the mixing model approach in the frequency domain. Our modeling focuses on the use of mixing models to explore geometrical effects. New spectroscopic data are presented for clay minerals (talc, kaolinite, illite and montmorillonite) and soils dominated by these clay minerals in the 1 MHz–6 GHz bandwidth. We also present a new typology for the way water is held in soils that we hope will act as a framework for furthering discussion on sensor design. We found that the frequency-domain response can be mostly accounted for by adjusting model structural parameters, which needs to be conducted to describe the Maxwell–Wagner (MW) relaxation effects. The work supports the importance of accounting for soil structural properties to understand and predict soil dielectric response and ultimately to find models that can describe the dielectric–water content relationship in fine-textured soils measured with sensors.The authors wish to thank Sally Logsdon for supplying the soils from USDA
    • …
    corecore