150 research outputs found
How important is sexual isolation to speciation?
K.L.S. was supported by Cornell University and the U.S. NSF during this project. C.R.C was supported by a Natural Environment Research Council Independent Research Fellowship (NE/T01105X/1). T.C.M. is supported by U.S. NSF 2026334. M.G.R. is supported by the Natural Environment Research Council (UK, NE/V001566/1).A central role for sexual isolation in the formation of new species and establishment of species boundaries has been noticed since Darwin and is frequently emphasized in the modern literature on speciation. However, an objective evaluation of when and how sexual isolation plays a role in speciation has been carried out in few taxa. We discuss three approaches for assessing the importance of sexual isolation relative to other reproductive barriers, including the relative evolutionary rate of sexual trait differentiation, the relative strength of sexual isolation in sympatry, and the role of sexual isolation in the long-term persistence of diverging forms. First, we evaluate evidence as to whether sexual isolation evolves faster than other reproductive barriers during the early stages of divergence. Second, we discuss available evidence as to whether sexual isolation is as strong or stronger than other barriers between closely related sympatric species. Finally, we consider the effect of sexual isolation on long-term species persistence, relative to other reproductive barriers. We highlight challenges to our knowledge of and opportunities to improve upon our understanding of sexual isolation from different phases of the speciation process.Peer reviewe
Roaring high and low: composition and possible functions of the Iberian stag's vocal repertoire
We provide a detailed description of the rutting vocalisations of free-ranging male Iberian deer (Cervus elaphus hispanicus, Hilzheimer 1909), a geographically isolated and morphologically differentiated subspecies of red deer Cervus elaphus. We combine spectrographic examinations, spectral analyses and automated classifications to identify different call types, and
compare the composition of the vocal repertoire with that of other red deer subspecies. Iberian stags give bouts of roars (and more rarely, short series of barks) that are typically composed of two different types of calls. Long Common Roars are mostly given at the beginning or at the end of the bout, and are characterised by a high fundamental frequency (F0) resulting in poorly defined formant frequencies but a relatively high amplitude. In contrast, Short Common Roars are typically given in the middle or at the end of the bout, and are characterised by a lower F0 resulting in relatively well defined vocal tract resonances, but low amplitude. While we did not identify entirely Harsh Roars (as described in the Scottish red
deer subspecies (Cervus elaphus scoticus), a small percentage of Long Common Roars contained segments of deterministic chaos. We suggest that the evolution of two clearly distinct types of Common Roars may reflect divergent selection pressures favouring either vocal efficiency in high pitched roars or the communication of body size in low-pitched, high spectral density roars highlighting vocal tract resonances. The clear divergence of the Iberian red deer vocal repertoire from those of other documented European red deer populations reinforces the status of this geographical variant as a distinct subspecies
Predicting where a radiation will occur: Acoustic and molecular surveys reveal overlooked diversity in Indian Ocean Island crickets (Mogoplistinae: Ornebius)
Recent theory suggests that the geographic location of island radiations (local accumulation of species diversity due to cladogenesis) can be predicted based on island area and isolation. Crickets are a suitable group for testing these predictions, as they show both the ability to reach some of the most isolated islands in the world, and to speciate at small spatial scales. Despite substantial song variation between closely related species in many island cricket lineages worldwide, to date this characteristic has not received attention in the western Indian Ocean islands; existing species descriptions are based on morphology alone. Here we use a combination of acoustics and DNA sequencing to survey these islands for Ornebius crickets. We uncover a small but previously unknown radiation in the Mascarenes, constituting a three-fold increase in the Ornebius species diversity of this archipelago (from two to six species). A further new species is detected in the Comoros. Although double archipelago colonisation is the best explanation for species diversity in the Seychelles, in situ cladogenesis is the best explanation for the six species in the Mascarenes and two species of the Comoros. Whether the radiation of Mascarene Ornebius results from intra- or purely inter- island speciation cannot be determined on the basis of the phylogenetic data alone. However, the existence of genetic, song and ecological divergence at the intra-island scale is suggestive of an intra-island speciation scenario in which ecological and mating traits diverge hand-in-hand. Our results suggest that the geographic location of Ornebius radiations is partially but not fully explained by island area and isolation. A notable anomaly is Madagascar, where our surveys are consistent with existing accounts in finding no Ornebius species present. Possible explanations are discussed, invoking ecological differences between species and differences in environmental history between islands. (Résumé d'auteur
Premating Reproductive Barriers between Hybridising Cricket Species Differing in Their Degree of Polyandry
Understanding speciation hinges on understanding how reproductive barriers arise between incompletely isolated populations. Despite their crucial role in speciation, prezygotic barriers are relatively poorly understood and hard to predict. We use two closely related cricket species, Gryllus bimaculatus and G. campestris, to experimentally investigate premating barriers during three sequential mate choice steps. Furthermore, we experimentally show a significant difference in polyandry levels between the two species and subsequently test the hypothesis that females of the more polyandrous species, G. bimaculatus, will be less discriminating against heterospecific males and hence hybridise more readily. During close-range mating behaviour experiments, males showed relatively weak species discrimination but females discriminated very strongly. In line with our predictions, this discrimination is asymmetric, with the more polyandrous G. bimaculatus mating heterospecifically and G. campestris females never mating heterospecifically. Our study shows clear differences in the strength of reproductive isolation during the mate choice process depending on sex and species, which may have important consequences for the evolution of reproductive barriers
Increase Human Metapneumovirus Mediated Morbidity following Pandemic Influenza Infection
Human metapneumovirus (hMPV) is a recently discovered respiratory pathogen, infecting mainly young children. The infected patients suffer from influenza like symptoms (ILS). In Israel the virus is mainly circulating in February to March. Here we report on an increased rate of hMPV infection in the winter season of 2009–10. The 2009–10 infection had several unique characteristics when compared to previous seasons; it started around January and a large number of infants were infected by the virus. Genetic analysis based on the viral L and F genes of hMPV showed that only subtypes A2 and B2 circulated in Israel. Additionally, we have identified a novel variant of hMPV within subgroup A2b, which subdivide it into A2b1 and A2b2. Finally, we showed that the hMPV infection was detected in the country soon after the infection with the pandemic influenza virus had declined, that infection with the pandemic influenza virus was dominant and that it interfered with the infection of other respiratory viruses. Thus, we suggest that the unusual increase in hMPV infection observed in 2009–10 was due to the appearance of the pandemic influenza virus in the winter season prior to 2009–10
Patterns of Reproductive Isolation in Toads
Understanding the general features of speciation is an important goal in evolutionary biology, and despite significant progress, several unresolved questions remain. We analyzed an extensive comparative dataset consisting of more than 1900 crosses between 92 species of toads to infer patterns of reproductive isolation. This unique dataset provides an opportunity to examine the strength of reproductive isolation, the development and sex ratios of hybrid offspring, patterns of fertility and infertility, and polyploidization in hybrids all in the context of genetic divergence between parental species. We found that the strength of intrinsic postzygotic isolation increases with genetic divergence, but relatively high levels of divergence are necessary before reproductive isolation is complete in toads. Fertilization rates were not correlated to genetic divergence, but hatching success, the number of larvae produced, and the percentage of tadpoles reaching metamorphosis were all inversely related with genetic divergence. Hybrids between species with lower levels of divergence developed to metamorphosis, while hybrids with higher levels of divergence stopped developing in gastrula and larval stages. Sex ratios of hybrid offspring were biased towards males in 70% of crosses and biased towards females in 30% of crosses. Hybrid females from crosses between closely related species were completely fertile, while approximately half (53%) of hybrid males were sterile, with sterility predicted by genetic divergence. The degree of abnormal ploidy in hybrids was positively related to genetic divergence between parental species, but surprisingly, polyploidization had no effect on patterns of asymmetrical inviability. We discuss explanations for these patterns, including the role of Haldane's rule in toads and anurans in general, and suggest mechanisms generating patterns of reproductive isolation in anurans
Molecular Phylogenetics of the Genus Neoconocephalus (Orthoptera, Tettigoniidae) and the Evolution of Temperate Life Histories
BACKGROUND:The katydid genus Neoconocephalus (25+ species) has a prominent acoustic communication system and occurs in large parts of the Neotropics and Nearctic. This group has been subject of numerous behavioral, physiological, and evolutionary studies of its acoustic communication system. Two distinct life histories occur in this group: The tropical life history incorporates multiple generations/year and direct egg development without environmental triggers. Temperate life history is characterized by overwintering in the egg stage, cold trigger of egg development, and one generation/year. This study reconstructs the phylogenetic relationships within the genus to (1) determine the evolutionary history of the temperate life history, and (2) to support comparative studies of evolutionary and physiological problems in this genus. METHODOLOGY/PRINCIPAL FINDINGS:We used Amplified Fragment Length Polymorphisms (AFLP), and sequences of two nuclear loci and one mitochondrial locus to reconstruct phylogenetic relationships. The analysis included 17 ingroup and two outgroup species. AFLP and mitochondrial data provided resolution at the species level while the two nuclear loci revealed only deeper nodes. The data sets were combined in a super-matrix to estimate a total evidence tree. Seven of the temperate species form a monophyletic group; however, three more temperate species were placed as siblings of tropical species. CONCLUSIONS/SIGNIFICANCE:Our analyses support the reliability of the current taxonomic treatment of the Neoconocephalus fauna of Caribbean, Central, and North America. Ancestral state reconstruction of life history traits was not conclusive, however at least four transitions between life histories occurred among our sample of species. The proposed phylogeny will strengthen conclusions from comparative work in this group
The paleobiological record of photosynthesis
Fossil evidence of photosynthesis, documented in Precambrian sediments by microbially laminated stromatolites, cyanobacterial microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends from the present to ~3,500 million years ago. Such data, however, do not resolve time of origin of O2-producing photoautotrophy from its anoxygenic, bacterial, evolutionary precursor. Though it is well established that Earth’s ecosystem has been based on autotrophy since its very early stages, the time of origin of oxygenic photosynthesis, more than 2,450 million years ago, has yet to be established
It's all about the children: a participant-driven photo-elicitation study of Mexican-origin mothers' food choices
Abstract Background There is a desperate need to address diet-related chronic diseases in Mexican-origin women, particularly for those in border region colonias (Mexican settlements) and other new destination communities in rural and non-rural areas of the U.S. Understanding the food choices of mothers, who lead food and health activities in their families, provides one way to improve health outcomes in Mexican-origin women and their children. This study used a visual method, participant-driven photo-elicitation, and grounded theory in a contextual study of food choices from the perspectives of Mexican-origin mothers. Methods Teams of trained promotoras (female community health workers from the area) collected all data in Spanish. Ten Mexican-origin mothers living in colonias in Hidalgo County, TX completed a creative photography assignment and an in-depth interview using their photographs as visual prompts and examples. English transcripts were coded inductively by hand, and initial observations emphasized the salience of mothers' food practices in their routine care-giving. This was explored further by coding transcripts in the qualitative data analysis software Atlas.ti. Results An inductive conceptual framework was created to provide context for understanding mothers' daily practices and their food practices in particular. Three themes emerged from the data: 1) a mother's primary orientation was toward her children; 2) leveraging resources to provide the best for her children; and 3) a mother's daily food practices kept her children happy, healthy, and well-fed. Results offer insight into the intricate meanings embedded in Mexican-origin mothers' routine food choices. Conclusions This paper provides a new perspective for understanding food choice through the eyes of mothers living in the colonias of South Texas -- one that emphasizes the importance of children in their routine food practices and the resilience of the mothers themselves. Additional research is needed to better understand mothers' perspectives and food practices with larger samples of women and among other socioeconomic groups
Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera
Acoustic communication is enabled by the evolution of specialised hearing and sound producing organs. In this study, we performed a large-scale macroevolutionary study to understand how both hearing and sound production evolved and affected diversification in the insect order Orthoptera, which includes many familiar singing insects, such as crickets, katydids, and grasshoppers. Using phylogenomic data, we firmly establish phylogenetic relationships among the major lineages and divergence time estimates within Orthoptera, as well as the lineage-specific and dynamic patterns of evolution for hearing and sound producing organs. In the suborder Ensifera, we infer that forewing-based stridulation and tibial tympanal ears co-evolved, but in the suborder Caelifera, abdominal tympanal ears first evolved in a non-sexual context, and later co-opted for sexual signalling when sound producing organs evolved. However, we find little evidence that the evolution of hearing and sound producing organs increased diversification rates in those lineages with known acoustic communication
- …
