744 research outputs found
A single sub-km Kuiper Belt object from a stellar Occultation in archival data
The Kuiper belt is a remnant of the primordial Solar System. Measurements of
its size distribution constrain its accretion and collisional history, and the
importance of material strength of Kuiper belt objects (KBOs). Small, sub-km
sized, KBOs elude direct detection, but the signature of their occultations of
background stars should be detectable. Observations at both optical and X-ray
wavelengths claim to have detected such occultations, but their implied KBO
abundances are inconsistent with each other and far exceed theoretical
expectations. Here, we report an analysis of archival data that reveals an
occultation by a body with a 500 m radius at a distance of 45 AU. The
probability of this event to occur due to random statistical fluctuations
within our data set is about 2%. Our survey yields a surface density of KBOs
with radii larger than 250 m of 2.1^{+4.8}_{-1.7} x 10^7 deg^{-2}, ruling out
inferred surface densities from previous claimed detections by more than 5
sigma. The fact that we detected only one event, firmly shows a deficit of
sub-km sized KBOs compared to a population extrapolated from objects with r>50
km. This implies that sub-km sized KBOs are undergoing collisional erosion,
just like debris disks observed around other stars.Comment: To appear in Nature on December 17, 2009. Under press embargo until
1800 hours London time on 16 December. 19 pages; 7 figure
Opening Pandora's Loot Box: Weak Links Between Gambling and Loot Box Expenditure in China, and Player Opinions on Probability Disclosures and Pity-Timers
Bayesian Best-Arm Identification for Selecting Influenza Mitigation Strategies
Pandemic influenza has the epidemic potential to kill millions of people.
While various preventive measures exist (i.a., vaccination and school
closures), deciding on strategies that lead to their most effective and
efficient use remains challenging. To this end, individual-based
epidemiological models are essential to assist decision makers in determining
the best strategy to curb epidemic spread. However, individual-based models are
computationally intensive and it is therefore pivotal to identify the optimal
strategy using a minimal amount of model evaluations. Additionally, as
epidemiological modeling experiments need to be planned, a computational budget
needs to be specified a priori. Consequently, we present a new sampling
technique to optimize the evaluation of preventive strategies using fixed
budget best-arm identification algorithms. We use epidemiological modeling
theory to derive knowledge about the reward distribution which we exploit using
Bayesian best-arm identification algorithms (i.e., Top-two Thompson sampling
and BayesGap). We evaluate these algorithms in a realistic experimental setting
and demonstrate that it is possible to identify the optimal strategy using only
a limited number of model evaluations, i.e., 2-to-3 times faster compared to
the uniform sampling method, the predominant technique used for epidemiological
decision making in the literature. Finally, we contribute and evaluate a
statistic for Top-two Thompson sampling to inform the decision makers about the
confidence of an arm recommendation
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Effect of the one-child policy on influenza transmission in China: a stochastic transmission model
published_or_final_versio
Volatility in the Housing Market: Evidence on Risk and Return in the London Sub-market
The impact of volatility in housing market analysis is reconsidered via examination of the risk-return relationship in the London housing market is examined. In addition to providing the first empirical results for the relationship between risk (as measured by volatility) and returns for this submarket, the analysis offers a more general message to empiricists via a detailed and explicit evaluation of the impact of empirical design decisions upon inferences. In particular, the negative risk-return relationship discussed frequently in the housing market literature is examined and shown to depend upon typically overlooked decisions concerning components of the empirical framework from which statistical inferences are drawn
Biocatalytic Synthesis of Polymers of Precisely Defined Structures
The fabrication of functional nanoscale devices requires the construction of complex architectures at length scales characteristic of atoms and molecules. Currently microlithography and micro-machining of macroscopic objects are the preferred methods for construction of small devices, but these methods are limited to the micron scale. An intriguing approach to nanoscale fabrication involves the association of individual molecular components into the desired architectures by supramolecular assembly. This process requires the precise specification of intermolecular interactions, which in turn requires precise control of molecular structure
Methods Used in Economic Evaluations of Chronic Kidney Disease Testing — A Systematic Review
Background: The prevalence of chronic kidney disease (CKD) is high in general populations around the world. Targeted testing and screening for CKD are often conducted to help identify individuals that may benefit from treatment to ameliorate or prevent their disease progression. Aims: This systematic review examines the methods used in economic evaluations of testing and screening in CKD, with a particular focus on whether test accuracy has been considered, and how analysis has incorporated issues that may be important to the patient, such as the impact of testing on quality of life and the costs they incur. Methods: Articles that described model-based economic evaluations of patient testing interventions focused on CKD were identified through the searching of electronic databases and the hand searching of the bibliographies of the included studies. Results: The initial electronic searches identified 2,671 papers of which 21 were included in the final review. Eighteen studies focused on proteinuria, three evaluated glomerular filtration rate testing and one included both tests. The full impact of inaccurate test results was frequently not considered in economic evaluations in this setting as a societal perspective was rarely adopted. The impact of false positive tests on patients in terms of the costs incurred in re-attending for repeat testing, and the anxiety associated with a positive test was almost always overlooked. In one study where the impact of a false positive test on patient quality of life was examined in sensitivity analysis, it had a significant impact on the conclusions drawn from the model. Conclusion: Future economic evaluations of kidney function testing should examine testing and monitoring pathways from the perspective of patients, to ensure that issues that are important to patients, such as the possibility of inaccurate test results, are properly considered in the analysis
<i>Trypanosoma brucei</i> DHRF-TS revisited:characterisation of a bifunctional and highly unstable recombinant dihydrofolate reductase-thymidylate synthase
<div><p>Bifunctional dihydrofolate reductase–thymidylate synthase (DHFR-TS) is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusion protein with elongation factor Ts (Tsf) in ThyA<sup>-</sup> <i>Escherichia coli</i>, retains DHFR activity, but lacks any TS activity. TS activity was found to be extremely unstable (half-life of 28 s) following desalting of clarified bacterial lysates to remove small molecules. Stability could be improved 700-fold by inclusion of dUMP, but not by other pyrimidine or purine (deoxy)-nucleosides or nucleotides. Inclusion of dUMP during purification proved insufficient to prevent inactivation during the purification procedure. Methotrexate and trimetrexate were the most potent inhibitors of DHFR (<i>K</i><sub>i</sub> 0.1 and 0.6 nM, respectively) and FdUMP and nolatrexed of TS (<i>K</i><sub>i</sub> 14 and 39 nM, respectively). All inhibitors showed a marked drop-off in potency of 100- to 1,000-fold against trypanosomes grown in low folate medium lacking thymidine. The most potent inhibitors possessed a terminal glutamate moiety suggesting that transport or subsequent retention by polyglutamylation was important for biological activity. Supplementation of culture medium with folate markedly antagonised the potency of these folate-like inhibitors, as did thymidine in the case of the TS inhibitors raltitrexed and pemetrexed.</p></div
Tissue microarray analysis of human FRAT1 expression and its correlation with the subcellular localisation of ?-catenin in ovarian tumours
The mechanisms involved in the pathogenesis of ovarian cancer are poorly understood, but evidence suggests that aberrant activation of Wnt/?-catenin signalling pathway plays a significant role in this malignancy. However, the molecular defects that contribute to the activation of this pathway have not been elucidated. Frequently rearranged in advanced T-cell lymphomas-1 (FRAT1) is a candidate for the regulation of cytoplasmic ?-catenin. In this study, we developed in situ hybridisation probes to evaluate the presence of FRAT1 and used an anti-?-catenin antibody to evaluate by immunohistochemistry the expression levels and subcellular localisation of ?-catenin in ovarian cancer tissue microarrays. Expression of FRAT1 was found in some human normal tissues and 47% of ovarian adenocarcinomas. A total of 46% of ovarian serous adenocarcinomas were positive for FRAT1 expression. Accumulation of ?-catenin in the nucleus and/or cytoplasm was observed in 55% ovarian adenocarcinomas and in 59% of serous adenocarcinomas. A significant association was observed in ovarian serous adenocarcinomas between FRAT1 and ?-catenin expression (P<0.01). These findings support that Wnt/?-catenin signalling may be aberrantly activated through FRAT1 overexpression in ovarian serous adenocarcinomas. The mechanism behind the overexpression of FRAT1 in ovarian serous adenocarcinomas and its significance is yet to be investigated
- …
