1,996 research outputs found
Taxol synthesis
Being a complex diterpenoid, the potent anticancer drug, Taxol, requires complicated steps for its biosynthesis. In the present article, recent advances on Taxol biosynthesis pathway are reviewed, including many recently reported genes that regulate Taxol biosynthesis. To meet the urgent need of clinic and scientific research, besides Taxus supply, other approaches to obtain Taxol have also been discussed here.Keywords: biosynthesis pathway, cell culture, endophytic fungi, Taxol, Taxu
The spatially varying polarization of a focused Gaussian beam in quasi-phase-matched superlattice under electro-optic effect
We present in this paper a wave coupling theory of linear electr-ooptic (EO) effect for quasi-phase matched (QPM) of focused Gaussian beam in an optical superlattice (OSL). The numerical results indicate that, due to the EO effect of an appropriate applied electric field, the output beam will form spatially inhomogeneous polarization, changing continuously in transverse section of beam; the confocal parameter has a significant impact on the output polarization of Gaussian beam and determines the half-wave voltage. (C) 2010 Optical Society of Americ
Electro-optic coupling of wide wavelength range in linear chirped-periodically poled lithium niobate and its applications
We theoretically investigate the electro-optic coupling in an optical superlattice of linear chirped-periodically poled lithium niobate. It is found that the electro-optic coupling in such optical superlattice can work in a wide wavelength range. Some of examples, with bandwidths of 20, 40, 80, 120nm, are demonstrated. The way to determine the electric field for perfect conversion between o- and e-ray and the method using apodized crystals of tanh profile to reduce the ripples are shown. As one of its applications, one kind of broadband Solc-type bandpass filter in optical communication range is proposed. (C) 2010 Optical Society of Americ
Global Ethics and Nanotechnology: A Comparison of the Nanoethics Environments of the EU and China
The following article offers a brief overview of current nanotechnology policy, regulation and ethics in Europe and The People’s Republic of China with the intent of noting (dis)similarities in approach, before focusing on the involvement of the public in science and technology policy (i.e. participatory Technology Assessment). The conclusions of this article are, that (a) in terms of nanosafety as expressed through policy and regulation, China PR and the EU have similar approaches towards, and concerns about, nanotoxicity—the official debate on benefits and risks is not markedly different in the two regions; (b) that there is a similar economic drive behind both regions’ approach to nanodevelopment, the difference being the degree of public concern admitted; and (c) participation in decision-making is fundamentally different in the two regions. Thus in China PR, the focus is on the responsibility of the scientist; in the EU, it is about government accountability to the public. The formulation of a Code of Conduct for scientists in both regions (China PR’s predicted for 2012) reveals both similarity and difference in approach to nanotechnology development. This may change, since individual responsibility alone cannot guide S&T development, and as public participation is increasingly seen globally as integral to governmental decision-making
A three-year longitudinal evaluation of the forearm bone density of users of etonogestrel- and levonorgestrel-releasing contraceptive implants
<p>Abstract</p> <p>Background</p> <p>The aim of this study was to evaluate bone mineral density (BMD) at baseline and at 18 and 36 months of use of etonogestrel (ENG)-and levonorgestrel (LNG)-releasing contraceptive implants. This is a continuation of a previous study in which BMD was evaluated at baseline and at 18 months of use.</p> <p>Methods</p> <p>A total of 111 women, 19–43 years of age, wererandomly allocated to use one of the two implants. At 36 months of follow-up, only 36 and 39 women were still using the ENG- and LNG-releasing implants, respectively. BMD was evaluated at the distal and at the ultra-distal radius of the non-dominant forearm using dual-energy X-ray absorptiometry.</p> <p>Results</p> <p>There was no difference in the BMD of users of either implant at 18 and at 36 months. BMD was significantly lower at 18 and at 36 months at the distal radius in both groups of users compared to pre-insertion values; however, no difference was found at the ultra-distal radius.</p> <p>Conclusion</p> <p>Women 19–43 years of age using either one of these two contraceptive implants for 36 months had lower BMD values at the distal radius compared to pre-insertion values; however, no difference was found at the ultra-distal radius.</p
Intrinsic activity in the fly brain gates visual information during behavioral choices
The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals
Emergence of scale-free close-knit friendship structure in online social networks
Despite the structural properties of online social networks have attracted
much attention, the properties of the close-knit friendship structures remain
an important question. Here, we mainly focus on how these mesoscale structures
are affected by the local and global structural properties. Analyzing the data
of four large-scale online social networks reveals several common structural
properties. It is found that not only the local structures given by the
indegree, outdegree, and reciprocal degree distributions follow a similar
scaling behavior, the mesoscale structures represented by the distributions of
close-knit friendship structures also exhibit a similar scaling law. The degree
correlation is very weak over a wide range of the degrees. We propose a simple
directed network model that captures the observed properties. The model
incorporates two mechanisms: reciprocation and preferential attachment. Through
rate equation analysis of our model, the local-scale and mesoscale structural
properties are derived. In the local-scale, the same scaling behavior of
indegree and outdegree distributions stems from indegree and outdegree of nodes
both growing as the same function of the introduction time, and the reciprocal
degree distribution also shows the same power-law due to the linear
relationship between the reciprocal degree and in/outdegree of nodes. In the
mesoscale, the distributions of four closed triples representing close-knit
friendship structures are found to exhibit identical power-laws, a behavior
attributed to the negligible degree correlations. Intriguingly, all the
power-law exponents of the distributions in the local-scale and mesoscale
depend only on one global parameter -- the mean in/outdegree, while both the
mean in/outdegree and the reciprocity together determine the ratio of the
reciprocal degree of a node to its in/outdegree.Comment: 48 pages, 34 figure
- …