964 research outputs found

    Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour

    Get PDF
    Stomata control gaseous fluxes between the internal leaf air spaces and the external atmosphere. Guard cells determine stomatal aperture and must operate to ensure an appropriate balance between CO2 uptake for photosynthesis (A) and water loss, and ultimately plant water use efficiency (WUE). A strong correlation between A and stomatal conductance (gs) is well documented and often observed, but the underlying mechanisms, possible signals and metabolites that promote this relationship are currently unknown. In this review we evaluate the current literature on mesophyll-driven signals that may coordinate stomatal behaviour with mesophyll carbon assimilation. We explore a possible role of various metabolites including sucrose and malate (from several potential sources; including guard cell photosynthesis) and new evidence that improvements in WUE have been made by manipulating sucrose metabolism within the guard cells. Finally we discuss the new tools and techniques available for potentially manipulating cell-specific metabolism, including guard and mesophyll cells, in order to elucidate mesophyll-derived signals that coordinate mesophyll CO2 demands with stomatal behaviour, in order to provide a mechanistic understanding of these processes as this may identify potential targets for manipulations in order to improve plant WUE and crop yield. © 2014 New Phytologist Trust

    The potential for deep groundwater use by Acacia papyrocarpa (Western myall) in a water-limited environment

    Get PDF
    Knowledge regarding the use of groundwater by plants has implications for successful mine rehabilitation and revegetation programs in water-limited environments. In this study, we combined several approaches to investigate water sources used by Acacia papyrocarpa (Western myall) in the far west of South Australia, including stable isotopes, water potential, groundwater and soil chemistry, and root mapping techniques. Plant δ 18 O signatures and water potentials were compared against a range of possible sources: rainwater, surface soil water (≤1 m depth), and deep groundwater ( > 20 m depth). Our aim was to determine whether groundwater contributed to the mix of waters used by A. papyrocarpa. Overall, we found that trees did not source surface soil water (≤1 m), and probably sourced deep soil water (i.e. > 1 m) rather than deep groundwater. Groundwater, however, could not be dismissed as a potential source, as root mapping showed tree roots were capable of reaching groundwater at depths > 20 m, and isotope results indicated a potential contribution by groundwater to tree water use. However, low osmotic potentials and/or high acidity levels were shown to pose likely barriers to groundwater uptake, at least at the time of sampling. We conclude that because groundwater salinity and acidity are spatially variable in this region, plants with extensive root systems may be able to utilize zones of groundwater with lower salinity and pH levels. Overall, this study contributes to our limited understanding of groundwater use by trees occurring in water-limited environments where groundwater is extremely deep ( > 20 m depth)

    Xyloglucan endotransglucosylase and cell wall extensibility

    Full text link
    Transgenic tomato hypocotyls with altered levels of an XTH gene were used to study how XET activity could affect the hypocotyl growth and cell wall extensibility. Transgenic hypocotyls showed significant over-expression (line 13) or co-suppression (line 33) of the SlXTH1 in comparison with the wild type, with these results being correlated with the results on specific soluble XET activity, suggesting that SlXTH1 translates mainly for a soluble XET isoenzyme. A relationship between XET activity and cell wall extensibility was found, and the highest total extensibility was located in the apical hypocotyl segment of the over-expressing SlXTH1 line, where the XET-specific activity and hypocotyl growth were also highest compared with the wild line

    Information flow during gene activation by signaling molecules: ethylene transduction in Arabidopsis cells as a study system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We study root cells from the model plant <it>Arabidopsis thaliana </it>and the communication channel conformed by the ethylene signal transduction pathway. A basic equation taken from our previous work relates the probability of expression of the gene <it>ERF</it>1 to the concentration of ethylene.</p> <p>Results</p> <p>The above equation is used to compute the Shannon entropy (<it>H</it>) or degree of uncertainty that the genetic machinery has during the decoding of the message encoded by the ethylene specific receptors embedded in the endoplasmic reticulum membrane and transmitted into the nucleus by the ethylene signaling pathway. We show that the amount of information associated with the expression of the master gene <it>ERF</it>1 (Ethylene Response Factor 1) can be computed. Then we examine the system response to sinusoidal input signals with varying frequencies to determine if the cell can distinguish between different regimes of information flow from the environment. Our results demonstrate that the amount of information managed by the root cell can be correlated with the frequency of the input signal.</p> <p>Conclusion</p> <p>The ethylene signaling pathway cuts off very low and very high frequencies, allowing a window of frequency response in which the nucleus reads the incoming message as a sinusoidal input. Out of this window the nucleus reads the input message as an approximately non-varying one. From this frequency response analysis we estimate: a) the gain of the system during the synthesis of the protein ERF1 (~-5.6 dB); b) the rate of information transfer (0.003 bits) during the transport of each new ERF1 molecule into the nucleus and c) the time of synthesis of each new ERF1 molecule (~21.3 s). Finally, we demonstrate that in the case of the system of a single master gene (<it>ERF</it>1) and a single slave gene (<it>HLS</it>1), the total Shannon entropy is completely determined by the uncertainty associated with the expression of the master gene. A second proposition shows that the Shannon entropy associated with the expression of the <it>HLS</it>1 gene determines the information content of the system that is related to the interaction of the antagonistic genes <it>ARF</it>1, 2 and <it>HLS</it>1.</p

    Light absorption by anthocyanins in juvenile, stressed, and senescing leaves

    Get PDF
    The optical properties of leaves from five species, Norway maple (Acer platanoides L.), cotoneaster (Cotoneaster alaunica Golite), hazel (Corylus avellana L.), Siberian dogwood (Cornus alba L.), and Virginia creeper (Parthenocissus quinquefolia (L.) Planch.), differing in pigment composition and at different stages of ontogenesis, were studied. Anthocyanin absorption maxima in vivo, as estimated with spectrophotometry of intact anthocyanic versus acyanic leaves and microspectrophotometry of vacuoles in the leaf cross-sections, were found between 537 nm and 542 nm, showing a red shift of 5–20 nm compared with the corresponding maxima in acidic water–methanol extracts. In non-senescent leaves, strong anthocyanin absorption was found between 500 nm and 600 nm (with a 70–80 nm apparent bandwidth). By and large, absorption by anthocyanin in leaves followed a modified form of the Lambert–Beer law, showing a linear trend up to a content of nearly 50 nmol cm−2, and permitting thereby a non-invasive determination of anthocyanin content. The apparent specific absorption coefficients of anthocyanins at 550 nm showed no substantial dependence on the species. Anthocyanin contribution to total light absorption at 550 nm was followed in maple leaves in the course of autumn senescence. Photoprotection by vacuolar anthocyanins is discussed with special regard to their distribution within a leaf; radiation screening by anthocyanins predominantly localized in the epidermal cells in A. platanoides and C. avellana leaves was also evaluated

    Physiological quality, content and activity of antioxidants in soybean seeds artificially aged.

    Get PDF
    ABSTRACT - The objective of this study was to evaluate physiological quality, content, and activity of antioxidants, in soybean seeds subjected to accelerated aging during different periods. Seeds of cultivars BRS 258, BRS 262 and BRS 268, subjected to accelerated aging during 12, 24, 36 and 48 hours and non-aged seeds were used. After each aging period, the seed were evaluated by tests of: germination; first count and tetrazolium. The total of phenolic compounds, total flavonoides, total of isoflavones, and activity for eliminating ABTS°+ radicals were quantified. There were differences among cultivars according to vigor and viability only after seeds were aged. Cultivars BRS 158 and BRS 268 have shown better seed physiological quality in each aging period; however, not presenting higher amounts of isoflavones and efficiency in removing free radicals. For all cultivars, the values for total of phenolic compounds, as well as total of flavonoids have shown quadratic positive behavior; the values for isoflavones remained constant and the vigor and viability showed contrary trend to activity of antioxidant agents. RESUMO: Qualidade fisiológica, conteúdo e atividade de antioxidantes presentes em sementes de soja envelhecidas artificialmente. O objetivo deste trabalho foi avaliar a qualidade fisiológica, o conteúdo e a atividade de agentes antioxidantes presentes em sementes de soja envelhecidas durante diferentes períodos. Foram utilizadas sementes das cultivares BRS 258, BRS 262 e BRS 268, envelhecidas durante 12, 24, 36 e 48 h e sementes não envelhecidas. Após cada período de envelhecimento, as sementes foram avaliadas pelo testes de: germinação; primeira contagem e tetrazólio. Foram quantificados: compostos fenólicos totais; flavonóides totais; total de isoflavonas e atividade eliminadora do radical ABTS°+. Houve diferença entre as cultivares em relação ao vigor e viabilidade somente quando foram envelhecidas. BRS 158 e BRS 268 apresentaram melhor qualidade fisiológica de sementes em cada período de envelhecimento, porém, não apresentaram maior quantidade de isoflavonas e eficiência no sequestro dos radicais livres. Para todas as cultivares, os valores de compostos fenólicos totais, assim como os flavonóides totais, apresentaram comportamento quadrático positivo; os valores das isoflavonas permaneceram constantes e o vigor e a viabilidade apresentaram tendência contrária à atividade dos agentes antioxidantes
    corecore