590 research outputs found
Ambipolar Filamentation of Turbulent Magnetic Fields : A numerical simulation
We present the results of a 2-D, two fluid (ions and neutrals) simulation of
the ambipolar filamentation process, in which a magnetized, weakly ionized
plasma is stirred by turbulence in the ambipolar frequency range. The higher
turbulent velocity of the neutrals in the most ionized regions gives rise to a
non-linear force driving them out of these regions, so that the initial
ionization inhomogeneities are strongly amplified. This effect, the ambipolar
filamentation, causes the ions and the magnetic flux to condense and separate
from the neutrals, resulting in a filamentary structure.Comment: 8 pages, 6 figures, accepted for publication in A&
Amplification of MHD waves in swirling astrophysical flows
Recently it was found that helical magnetized flows efficiently amplify
Alfv\'en waves (Rogava et al. 2003, A&A, v.399, p.421). This robust and
manifold nonmodal effect was found to involve regimes of transient algebraic
growth (for purely ejectional flows), and exponential instabilities of both
usual and parametric nature. However the study was made in the incompressible
limit and an important question remained open - whether this amplification is
inherent to swirling MHD flows per se and what is the degree of its dependence
on the incompressibility condition. In this paper, in order to clear up this
important question, we consider full compressible spectrum of MHD modes:
Alfv\'en waves (AW), slow magnetosonic waves (SMW) and fast magnetosonic waves
(FMW). We find that helical flows inseparably blend these waves with each other
and make them unstable, creating the efficient energy transfer from the mean
flow to the waves. The possible role of these instabilities for the onset of
the MHD turbulence, self-heating of the flow and the overall dynamics of
astrophysical flows are discussed.Comment: 8 pages, 9 figures, accepted for publication (18.03.2003) in the
"Astronomy and Astrophysics
KH15D: a star eclipsed by a large scale dusty vortex?
We propose that the large photometric variations of KH15D are due to an
eclipsing swarm of solid particles trapped in giant gaseous vortex rotating at
\~0.2 AU from the star. The efficiency of the capture-in-vortex mechanism
easily explains the observed large optical depth. The weaker opacity at
mid-eclipse is consistent with a size segregation of the particles toward the
center of the vortex. This dusty structure must extend over ~1/3 of an orbit to
account for the long eclipse duration. The estimated size of the trapped
particles is found to range from 1 to 10cm, consistent with the gray extinction
of the star. The observations of KH15D support the idea that giant vortices can
grow in circumstellar disks and play a central role in planet formation.Comment: Accepted in ApJ Letters - 4 pages - 2 figure
On the role of the magnetic field on jet emission in X-ray binaries
Radio and X-ray fluxes of accreting black holes in their hard state are known
to correlate over several orders of magnitude. This correlation however shows a
large scatter: black hole candidates with very similar X-ray luminosity,
spectral energy distribution and variability, show rather different radio
luminosities. This challenges theoretical models that aim at describing both
the radio and the X-ray fluxes in terms of radiative emission from a
relativistic jet. More generally, it opens important questions on how similar
accretion flows can produce substantially different outflows. Here we present a
possible explanation for this phenomenon, based on the strong dependency of the
jet spectral energy distribution on the magnetic field strength, and on the
idea that the strength of the jet magnetic field varies from source to source.
Because of the effect of radiative losses, sources with stronger jet magnetic
field values would have lower radio emission. We discuss the implications of
this scenario, the main one being that the radio flux does not necessarily
provide a direct measure of the jet power. We further discuss how a variable
jet magnetic field, reaching a critical value, can qualitatively explain the
observed spectral transition out of the hard state.Comment: 4 pages, 2 figures. Accepted for publication on ApJ Letter
Swirling astrophysical flows - efficient amplifiers of Alfven waves
We show that a helical shear flow of a magnetized plasma may serve as an
efficient amplifier of Alfven waves. We find that even when the flow is purely
ejectional (i.e., when no rotation is present) Alfven waves are amplified
through the transient, shear-induced, algebraic amplification process. Series
of transient amplifications, taking place sequentially along the flow, may
result in a cascade amplification of these waves. However, when a flow is
swirling or helical (i.e., some rotation is imposed on the plasma motion),
Alfven waves become subject to new, much more powerful shear instabilities. In
this case, depending on the type of differential rotation, both usual and
parametric instabilities may appear. We claim that these phenomena may lead to
the generation of large amplitude Alfven waves and the mechanism may account
for the appearance of such waves in the solar atmosphere, in accretion-ejecion
flows and in accretion columns. These processes may also serve as an important
initial (linear and nonmodal) phase in the ultimate subcritical transition to
MHD Alfvenic turbulence in various kinds of astrophysical shear flows.Comment: 12 pages, 11 figures, accepted for publication (25-11-02) in
Astronomy and Astrophysic
A Hot Helium Plasma in the Galactic Center Region
Recent X-ray observations by the space mission Chandra confirmed the
astonishing evidence for a diffuse, hot, thermal plasma at a temperature of 9.
K (8 keV) found by previous surveys to extend over a few hundred parsecs
in the Galactic Centre region. This plasma coexists with the usual components
of the interstellar medium such as cold molecular clouds and a soft (~0.8 keV)
component produced by supernova remnants, and its origin remains uncertain.
First, simple calculations using a mean sound speed for a hydrogen-dominated
plasma have suggested that it should not be gravitationally bound, and thus
requires a huge energy source to heat it in less than the escape time. Second,
an astrophysical mechanism must be found to generate such a high temperature.
No known source has been identified to fulfill both requirements. Here we
address the energetics problem and show that the hot component could actually
be a gravitationally confined helium plasma. We illustrate the new prospects
this opens by discussing the origin of this gas, and by suggesting possible
heating mechanisms.Comment: 9 pages, accepted for publication in APJ
Recommended from our members
Federated ontology-based queries over cancer data
Background
Personalised medicine provides patients with treatments that are specific to their genetic profiles. It requires efficient data sharing of disparate data types across a variety of scientific disciplines, such as molecular biology, pathology, radiology and clinical practice. Personalised medicine aims to offer the safest and most effective therapeutic strategy based on the gene variations of each subject. In particular, this is valid in oncology, where knowledge about genetic mutations has already led to new therapies. Current molecular biology techniques (microarrays, proteomics, epigenetic technology and improved DNA sequencing technology) enable better characterisation of cancer tumours. The vast amounts of data, however, coupled with the use of different terms - or semantic heterogeneity - in each discipline makes the retrieval and integration of information difficult.
Results
Existing software infrastructures for data-sharing in the cancer domain, such as caGrid, support access to distributed information. caGrid follows a service-oriented model-driven architecture. Each data source in caGrid is associated with metadata at increasing levels of abstraction, including syntactic, structural, reference and domain metadata. The domain metadata consists of ontology-based annotations associated with the structural information of each data source. However, caGrid's current querying functionality is given at the structural metadata level, without capitalising on the ontology-based annotations. This paper presents the design of and theoretical foundations for distributed ontology-based queries over cancer research data. Concept-based queries are reformulated to the target query language, where join conditions between multiple data sources are found by exploiting the semantic annotations. The system has been implemented, as a proof of concept, over the caGrid infrastructure. The approach is applicable to other model-driven architectures. A graphical user interface has been developed, supporting ontology-based queries over caGrid data sources. An extensive evaluation of the query reformulation technique is included.
Conclusions
To support personalised medicine in oncology, it is crucial to retrieve and integrate molecular, pathology, radiology and clinical data in an efficient manner. The semantic heterogeneity of the data makes this a challenging task. Ontologies provide a formal framework to support querying and integration. This paper provides an ontology-based solution for querying distributed databases over service-oriented, model-driven infrastructures
Two years of INTEGRAL monitoring of GRS 1915+105 Part 1: multiwavelength coverage with INTEGRAL, RXTE, and the Ryle radio Telescope
(Abridged) We report the results of monitoring observations of the Galactic
microquasar GRS 1915+105 performed simultaneously with INTEGRAL and RXTE Ryle .
We present the results of the whole \integral campaign, report the sources that
are detected and their fluxes and identify the classes of variability in which
GRS 1915+105 is found. The accretion ejection connections are studied in a
model independent manner through the source light curves, hardness ratio, and
color color diagrams. During a period of steady ``hard'' X-ray state (the
so-called class chi) we observe a steady radio flux. We then turn to 3
particular observations during which we observe several types of soft X-ray
dips and spikes cycles, followed by radio flares. During these observations GRS
1915+105 is in the so-called nu, lambda, and beta classes of variability. The
observation of ejections during class lambda are the first ever reported. We
generalize the fact that a (non-major) discrete ejection always occurs, in GRS
1915+105, as a response to an X-ray sequence composed of a spectrally hard
X-ray dip terminated by an X-ray spike marking the disappearance of the hard
X-ray emission above 18 keV. We also identify the trigger of the ejection as
this X-ray spike. A possible correlation between the amplitude of the radio
flare and the duration of the X-ray dip is found in our data. In this case the
X-ray dips prior to ejections could be seen as the time during which the source
accumulates energy and material that is ejected later.Comment: 17 pages, 14 figures. Accepted for publication in ApJ, scheduled for
the March 20, 2008, vol676 issue. Table 3 has been degrade
- …