110 research outputs found

    Measuring affective well-being at work using short-form scales : implications for affective structures and participant instructions

    Get PDF
    Measuring affective well-being in organizational studies has become increasingly widespread, given its association with key work-performance and other markers of organizational functioning. As such, researchers and policy-makers need to be confident that well-being measures are valid, reliable and robust. To reduce the burden on participants in applied settings, short-form measures of affective well-being are proving popular. However, these scales are seldom validated as standalone, comprehensive measures in their own right. In this article, we used a short-form measure of affective well-being with 10 items: the Daniels five-factor measure of affective well-being (D-FAW). In Study 1, across six applied sample groups (N = 2624), we found that the factor structure of the short-form D-FAW is robust when issued as a standalone measure, and that it should be scored differently depending on the participant instruction used. When participant instructions focus on now or today, then affect is best represented by five discrete emotion factors. When participant instructions focus on the past week, then affect is best represented by two or three mood-based factors. In Study 2 (N = 39), we found good construct convergent validity of short-form D-FAW with another widely used scale (PANAS). Implications for the measurement and structure of affect are discussed

    BSSF: a fingerprint based ultrafast binding site similarity search and function analysis server

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome sequencing and post-genomics projects such as structural genomics are extending the frontier of the study of sequence-structure-function relationship of genes and their products. Although many sequence/structure-based methods have been devised with the aim of deciphering this delicate relationship, there still remain large gaps in this fundamental problem, which continuously drives researchers to develop novel methods to extract relevant information from sequences and structures and to infer the functions of newly identified genes by genomics technology.</p> <p>Results</p> <p>Here we present an ultrafast method, named BSSF(Binding Site Similarity & Function), which enables researchers to conduct similarity searches in a comprehensive three-dimensional binding site database extracted from PDB structures. This method utilizes a fingerprint representation of the binding site and a validated statistical Z-score function scheme to judge the similarity between the query and database items, even if their similarities are only constrained in a sub-pocket. This fingerprint based similarity measurement was also validated on a known binding site dataset by comparing with geometric hashing, which is a standard 3D similarity method. The comparison clearly demonstrated the utility of this ultrafast method. After conducting the database searching, the hit list is further analyzed to provide basic statistical information about the occurrences of Gene Ontology terms and Enzyme Commission numbers, which may benefit researchers by helping them to design further experiments to study the query proteins.</p> <p>Conclusions</p> <p>This ultrafast web-based system will not only help researchers interested in drug design and structural genomics to identify similar binding sites, but also assist them by providing further analysis of hit list from database searching.</p

    BSSF: a fingerprint based ultrafast binding site similarity search and function analysis server

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome sequencing and post-genomics projects such as structural genomics are extending the frontier of the study of sequence-structure-function relationship of genes and their products. Although many sequence/structure-based methods have been devised with the aim of deciphering this delicate relationship, there still remain large gaps in this fundamental problem, which continuously drives researchers to develop novel methods to extract relevant information from sequences and structures and to infer the functions of newly identified genes by genomics technology.</p> <p>Results</p> <p>Here we present an ultrafast method, named BSSF(Binding Site Similarity & Function), which enables researchers to conduct similarity searches in a comprehensive three-dimensional binding site database extracted from PDB structures. This method utilizes a fingerprint representation of the binding site and a validated statistical Z-score function scheme to judge the similarity between the query and database items, even if their similarities are only constrained in a sub-pocket. This fingerprint based similarity measurement was also validated on a known binding site dataset by comparing with geometric hashing, which is a standard 3D similarity method. The comparison clearly demonstrated the utility of this ultrafast method. After conducting the database searching, the hit list is further analyzed to provide basic statistical information about the occurrences of Gene Ontology terms and Enzyme Commission numbers, which may benefit researchers by helping them to design further experiments to study the query proteins.</p> <p>Conclusions</p> <p>This ultrafast web-based system will not only help researchers interested in drug design and structural genomics to identify similar binding sites, but also assist them by providing further analysis of hit list from database searching.</p

    Patterns of Selection in Anti-Malarial Immune Genes in Malaria Vectors: Evidence for Adaptive Evolution in LRIM1 in Anopheles arabiensis

    Get PDF
    Co-evolution between Plasmodium species and its vectors may result in adaptive changes in genes that are crucial components of the vector's defense against the pathogen. By analyzing which genes show evidence of positive selection in malaria vectors, but not in closely related non-vectors, we can identify genes that are crucial for the mosquito's resistance against Plasmodium.We investigated genetic variation of three anti-malarial genes; CEC1, GNBP-B1 and LRIM1, in both vector and non-vector species of the Anopheles gambiae complex. Whereas little protein differentiation was observed between species in CEC1 and GNBP-B1, McDonald-Kreitman and maximum likelihood tests of positive selection show that LRIM1 underwent adaptive evolution in a primary malaria vector; An. arabiensis. In particular, two adjacent codons show clear signs of adaptation by having accumulated three out of four replacement substitutions. Furthermore, our data indicate that this LRIM1 allele has introgressed from An. arabiensis into the other main malaria vector An. gambiae.Although no evidence exists to link the adaptation of LRIM1 to P. falciparum infection, an adaptive response of a known anti-malarial gene in a primary malaria vector is intriguing, and may suggest that this gene could play a role in Plasmodium resistance in An. arabiensis. If so, our data also predicts that LRIM1 alleles in An. gambiae vary in their level of resistance against P. falciparum

    208Po populated through EC/β+decay

    Get PDF
    The structure of 208Po resulting from the EC/β + decay of 208At was studied at CERN’s ISOLDE Decay Station (IDS). The high statistics afforded by the high yield of 208At and the high efficiency HPGe clusters at the IDS allowed for greater insight into lower intensity transitions and thus significant expansion of the 208Po level scheme. Furthermore, investigation into the isomeric state yielded a new half life 377(9) ns in addition to uncovering new transitions populating the state.The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 654002. As well as the Science and Technology Facilities Council (UK) through grants ST/P005314/1, ST/L005743/1, ST/J000051/1, ST/L005670/1, and ST/P004598/1 and (PHR) by the UK Department of Business, Energy and Industrial Strategy (BEIS) via the National Measurement System. Further funding was provided by the German BMBF under contract 05P18PKCIA and ”Verbundprojekt 05P2018” as well as the Spanish MINECO grant FPA2015-65035-P.Peer reviewe
    corecore