1,208 research outputs found
Identification of ovarian cancer metastatic miRNAs
Serous epithelial ovarian cancer (EOC) patients often succumb to aggressive metastatic disease, yet little is known about the behavior and genetics of ovarian cancer metastasis. Here, we aim to understand how omental metastases differ from primary tumors and how these differences may influence chemotherapy. We analyzed the miRNA expression profiles of primary EOC tumors and their respective omental metastases from 9 patients using miRNA Taqman qPCR arrays. We find 17 miRNAs with differential expression in omental lesions compared to primary tumors. miR-21, miR-150, and miR-146a have low expression in most primary tumors with significantly increased expression in omental lesions, with concomitant decreased expression of predicted mRNA targets based on mRNA expression. We find that miR-150 and miR-146a mediate spheroid size. Both miR-146a and miR-150 increase the number of residual surviving cells by 2–4 fold when challenged with lethal cisplatin concentrations. These observations suggest that at least two of the miRNAs, miR-146a and miR-150, up-regulated in omental lesions, stimulate survival and increase drug tolerance. Our observations suggest that cancer cells in omental tumors express key miRNAs differently than primary tumors, and that at least some of these microRNAs may be critical regulators of the emergence of drug resistant disease.<br/
Marine Biodiversity in South Africa: An Evaluation of Current States of Knowledge
Continental South Africa has a coastline of some 3,650 km and an Exclusive Economic Zone (EEZ) of just over 1 million km2. Waters in the EEZ extend to a depth of 5,700 m, with more than 65% deeper than 2,000 m. Despite its status as a developing nation, South Africa has a relatively strong history of marine taxonomic research and maintains comprehensive and well-curated museum collections totaling over 291,000 records. Over 3 million locality records from more than 23,000 species have been lodged in the regional AfrOBIS (African Ocean Biogeographic Information System) data center (which stores data from a wider African region). A large number of regional guides to the marine fauna and flora are also available and are listed
Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle
gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle
Optimality of mutation and selection in germinal centers
The population dynamics theory of B cells in a typical germinal center could
play an important role in revealing how affinity maturation is achieved.
However, the existing models encountered some conflicts with experiments. To
resolve these conflicts, we present a coarse-grained model to calculate the B
cell population development in affinity maturation, which allows a
comprehensive analysis of its parameter space to look for optimal values of
mutation rate, selection strength, and initial antibody-antigen binding level
that maximize the affinity improvement. With these optimized parameters, the
model is compatible with the experimental observations such as the ~100-fold
affinity improvements, the number of mutations, the hypermutation rate, and the
"all or none" phenomenon. Moreover, we study the reasons behind the optimal
parameters. The optimal mutation rate, in agreement with the hypermutation rate
in vivo, results from a tradeoff between accumulating enough beneficial
mutations and avoiding too many deleterious or lethal mutations. The optimal
selection strength evolves as a balance between the need for affinity
improvement and the requirement to pass the population bottleneck. These
findings point to the conclusion that germinal centers have been optimized by
evolution to generate strong affinity antibodies effectively and rapidly. In
addition, we study the enhancement of affinity improvement due to B cell
migration between germinal centers. These results could enhance our
understandings to the functions of germinal centers.Comment: 5 figures in main text, and 4 figures in Supplementary Informatio
Evaluated Community Fire Safety Interventions in the United States: A Review of Current Literature
The purpose of the study was to assess the state of fire prevention research, provide an updated synthesis of evaluated fire prevention programs, and discuss the role of fire fighters and data systems in prevention efforts. The review included all evaluations of U.S. based fire prevention interventions published between January 1998 and September 2004 and any earlier articles about U.S. fire prevention interventions not included in two prior review articles. We retrieved information from each identified study including evaluation findings, involvement of fire service personnel and use of existing data systems. We identified twelve articles: seven reported on smoke alarm interventions, three on multi-faceted programs, and two other programs. Five programs involved fire service personnel in the design, implementation, and/or evaluation, and three used existing data systems. Studies reviewed suggest that canvassing and smoke alarm installations are the most effective means of distributing alarms and increasing the functional status of distributed alarms. The functionality of smoke alarms, an issue noted in earlier reviews, remains a problem. Programs involving partnerships with fire departments have indicated success in preventing fires and deaths, improving smoke alarm ownership and functional status, and improving children’s fire safety knowledge. Using existing data systems to target and to evaluate interventions was effective. In the years since prior reviews, some improvements in the rigor of evaluation designs have been made, but there is still a need for high quality evaluations that will inform fire injury prevention efforts
Network Archaeology: Uncovering Ancient Networks from Present-day Interactions
Often questions arise about old or extinct networks. What proteins interacted
in a long-extinct ancestor species of yeast? Who were the central players in
the Last.fm social network 3 years ago? Our ability to answer such questions
has been limited by the unavailability of past versions of networks. To
overcome these limitations, we propose several algorithms for reconstructing a
network's history of growth given only the network as it exists today and a
generative model by which the network is believed to have evolved. Our
likelihood-based method finds a probable previous state of the network by
reversing the forward growth model. This approach retains node identities so
that the history of individual nodes can be tracked. We apply these algorithms
to uncover older, non-extant biological and social networks believed to have
grown via several models, including duplication-mutation with complementarity,
forest fire, and preferential attachment. Through experiments on both synthetic
and real-world data, we find that our algorithms can estimate node arrival
times, identify anchor nodes from which new nodes copy links, and can reveal
significant features of networks that have long since disappeared.Comment: 16 pages, 10 figure
Oxyanion doping strategies to enhance the ionic conductivity in Ba2In2O5
In this paper we report the successful incorporation of phosphate and sulphate groups into the ionic conductor, Ba2In2O5, with the samples analysed through a combination of X-ray diffraction, NMR, TGA, Raman spectroscopy and conductivity measurements. The results show that such oxyanion incorporation leads to a conversion from an ordered brownmillerite-type structure to a disordered perovskite-type, and hence increases the conductivity at temperatures < 800â—‹C. In wet atmospheres, there is evidence for a significant enhancement of the conductivity through a protonic contribution.\u
Classical kinetic energy, quantum fluctuation terms and kinetic-energy functionals
We employ a recently formulated dequantization procedure to obtain an exact
expression for the kinetic energy which is applicable to all kinetic-energy
functionals. We express the kinetic energy of an N-electron system as the sum
of an N-electron classical kinetic energy and an N-electron purely quantum
kinetic energy arising from the quantum fluctuations that turn the classical
momentum into the quantum momentum. This leads to an interesting analogy with
Nelson's stochastic approach to quantum mechanics, which we use to conceptually
clarify the physical nature of part of the kinetic-energy functional in terms
of statistical fluctuations and in direct correspondence with Fisher
Information Theory. We show that the N-electron purely quantum kinetic energy
can be written as the sum of the (one-electron) Weizsacker term and an
(N-1)-electron kinetic correlation term. We further show that the Weizsacker
term results from local fluctuations while the kinetic correlation term results
from the nonlocal fluctuations. For one-electron orbitals (where kinetic
correlation is neglected) we obtain an exact (albeit impractical) expression
for the noninteracting kinetic energy as the sum of the classical kinetic
energy and the Weizsacker term. The classical kinetic energy is seen to be
explicitly dependent on the electron phase and this has implications for the
development of accurate orbital-free kinetic-energy functionals. Also, there is
a direct connection between the classical kinetic energy and the angular
momentum and, across a row of the periodic table, the classical kinetic energy
component of the noninteracting kinetic energy generally increases as Z
increases.Comment: 10 pages, 1 figure. To appear in Theor Chem Ac
An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis
Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is
a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a
complex disease caused by metastasis of tumor cells from their primary site and
is characterized by intricate interplay of molecular interactions.
Identification of targets for multifactorial diseases such as SBC, the most
frequent complication of breast and prostate cancers, is a challenge. Towards
achieving our aim of identification of targets specific to SBC, we constructed
a 'Cancer Genes Network', a representative protein interactome of cancer genes.
Using graph theoretical methods, we obtained a set of key genes that are
relevant for generic mechanisms of cancers and have a role in biological
essentiality. We also compiled a curated dataset of 391 SBC genes from
published literature which serves as a basis of ontological correlates of
secondary bone cancer. Building on these results, we implement a strategy based
on generic cancer genes, SBC genes and gene ontology enrichment method, to
obtain a set of targets that are specific to bone metastasis. Through this
study, we present an approach for probing one of the major complications in
cancers, namely, metastasis. The results on genes that play generic roles in
cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have
broader implications in understanding the role of molecular regulators in
mechanisms of cancers. Specifically, our study provides a set of potential
targets that are of ontological and regulatory relevance to secondary bone
cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary
information). Revised after critical reviews. Accepted for Publication in
PLoS ON
- …