1,541 research outputs found
How to optimize nonlinear force-free coronal magnetic field extrapolations from SDO/HMI vector magnetograms?
The SDO/HMI instruments provide photospheric vector magnetograms with a high
spatial and temporal resolution. Our intention is to model the coronal magnetic
field above active regions with the help of a nonlinear force-free
extrapolation code. Our code is based on an optimization principle and has been
tested extensively with semi-analytic and numeric equilibria and been applied
before to vector magnetograms from Hinode and ground based observations.
Recently we implemented a new version which takes measurement errors in
photospheric vector magnetograms into account. Photospheric field measurements
are often due to measurement errors and finite nonmagnetic forces inconsistent
as a boundary for a force-free field in the corona. In order to deal with these
uncertainties, we developed two improvements: 1.) Preprocessing of the surface
measurements in order to make them compatible with a force-free field 2.) The
new code keeps a balance between the force-free constraint and deviation from
the photospheric field measurements. Both methods contain free parameters,
which have to be optimized for use with data from SDO/HMI. Within this work we
describe the corresponding analysis method and evaluate the force-free
equilibria by means of how well force-freeness and solenoidal conditions are
fulfilled, the angle between magnetic field and electric current and by
comparing projections of magnetic field lines with coronal images from SDO/AIA.
We also compute the available free magnetic energy and discuss the potential
influence of control parameters.Comment: 17 Pages, 6 Figures, Sol. Phys., accepte
Low field vortex matter in YBCO: an atomic beam magnetic resonance study
We report measurements of the low field structure of the magnetic vortex
lattice in an untwinned YBCO single-crystal platelet. Measurements were carried
out using a novel atomic beam magnetic resonance (ABMR) technique. For a 10.7 G
field applied parallel to the c-axis of the sample, we find a triangular
lattice with orientational order extending across the entire sample. We find
the triangular lattice to be weakly distorted by the a-b anisotropy of the
material and measure a distortion factor, f = 1.16. Model-experiment
comparisons determine a penetration depth, lambda_ab = 140 (+-20) nm. The paper
includes the first detailed description of the ABMR technique. We discuss both
technical details of the experiment and the modeling used to interpret the
measurements.Comment: 44 pages, 13 figures, submitted to Phys. Rev. B Revision includes
Postscript wrapped figures + minor typo
Properties of high-frequency wave power halos around active regions: an analysis of multi-height data from HMI and AIA onboard SDO
We study properties of waves of frequencies above the photospheric acoustic
cut-off of 5.3 mHz, around four active regions, through spatial maps
of their power estimated using data from Helioseismic and Magnetic Imager (HMI)
and Atmospheric Imaging Assembly (AIA) onboard Solar Dynamics Observatory
(SDO). The wavelength channels 1600 {\AA} and 1700 {\AA} from AIA are now known
to capture clear oscillation signals due to helioseismic p modes as well as
waves propagating up through to the chromosphere. Here we study in detail, in
comparison with HMI Doppler data, properties of the power maps, especially the
so called 'acoustic halos' seen around active regions, as a function of wave
frequencies, inclination and strength of magnetic field (derived from the
vector field observations by HMI) and observation height. We infer possible
signatures of (magneto-)acoustic wave refraction from the observation height
dependent changes, and hence due to changing magnetic strength and geometry, in
the dependences of power maps on the photospheric magnetic quantities. We
discuss the implications for theories of p mode absorption and mode conversions
by the magnetic field.Comment: 22 pages, 12 figures, Accepted by journal Solar Physic
A intenção de usar sites de redes sociais: impacto da inovação pessoal.
This study empirically investigates the impact of personal innovativeness on Intention to Use (IU) Social Networking Sites (SNS).The theoretical perspective of Technological Acceptance Model (TAM) and Personal Innovativeness of Information Technology (PIIT) were used to explain the relationships developed in the study. This research is descriptive in nature and based on primary data collected through a self-administered questionnaire, administered to a sample of 216 undergraduates in Sri Lanka. Findings reconfirmed the relationships in original TAM, enabling to use TAM in SNS context. Further, we found PIIT is significant in predicting IU SNS. Theoretical and practical implications of these findings and directions for further research are discussed.Este estudo investiga empiricamente o impacto da inovação pessoal na intenção de usar ( IU ) sites de redes sociais (SNS ). A perspectiva teórica do Modelo de Aceitação Tecnológica (TAM) e a vontade pessoal de utilizar Tecnologia de Informação Inovadora (PIIT) foram utilizadas para explicar as relações desenvolvidas no estudo. A pesquisa é de natureza descritiva e baseia-se em dados primários coletados através de um questionário auto-administrado, utilizando uma amostra de 216 estudantes de graduação no Sri Lanka. Os resultados confirmaram as relações no TAM original, permitindo usar a TAM no contexto SNS. Além disso, mostrou que o PIIT é significativo na previsão IU SNS. As implicações teóricas e práticas destes achados e orientações para futuras pesquisas foram tamabem avaliadas
Distinguishing d-wave from highly anisotropic s-wave superconductors
Systematic impurity doping in the Cu-O plane of the hole-doped cuprate
superconductors may allow one to decide between unconvention al ("d-wave") and
anisotropic conventional ("s-wave") states as possible candidates for the order
parameter in these materials. We show that potential scattering of any strength
always increases the gap minima of such s-wave states, leading to activated
behavior in temperature with characteristic impurity concentration dependence
in observable quantities such as the penetration depth. A magnetic component to
the scattering may destroy the energy gap and give rise to conventional gapless
behavior, or lead to a nonmonotonic dependence of the gap on impurity
concentration. We discuss how experiments constrain this analysis.Comment: 5 page
A spatio-temporal description of the abrupt changes in the photospheric magnetic and Lorentz-force vectors during the 2011 February 15 X2.2 flare
The active region NOAA 11158 produced the first X-class flare of Solar Cycle
24, an X2.2 flare at 01:44 UT on 2011 February 15. Here we analyze SDO/HMI
magnetograms covering a 12-hour interval centered at the time of this flare. We
describe the spatial distributions of the photospheric magnetic changes
associated with this flare, including the abrupt changes in the field vector,
vertical electric current and Lorentz force vector. We also trace these
parameters' temporal evolution. The abrupt magnetic changes were concentrated
near the neutral line and in two neighboring sunspots. Near the neutral line,
the field vectors became stronger and more horizontal during the flare and the
shear increased. This was due to an increase in strength of the horizontal
field components near the neutral line, most significant in the horizontal
component parallel to the neutral line but the perpendicular component also
increased in strength. The vertical component did not show a significant,
permanent overall change at the neutral line. The increase in total flux at the
neutral line was accompanied by a compensating flux decrease in the surrounding
volume. In the two sunspots near the neutral line the azimuthal flux abruptly
decreased during the flare but this change was permanent in only one of the
spots. There was a large, abrupt, downward vertical Lorentz force change during
the flare, consistent with results of past analyses and recent theoretical
work. The horizontal Lorentz force acted in opposite directions along each side
of neutral line, with the two sunspots at each end subject to abrupt torsional
forces. The shearing forces were consistent with field contraction and decrease
of shear near the neutral line, whereas the field itself became more sheared as
a result of the flux collapsing towards the neutral line from the surrounding
volume.Comment: DOI 10.1007/s11207-012-0071-0. Accepted for publication in Solar
Physics SDO3 Topical Issue. Some graphics missing due to 15MB limi
Localization of electromagnetic waves in a two dimensional random medium
Motivated by previous investigations on the radiative effects of the electric
dipoles embedded in structured cavities, localization of electromagnetic waves
in two dimensions is studied {\it ab initio} for a system consisting of many
randomly distributed two dimensional dipoles. A set of self-consistent
equations, incorporating all orders of multiple scattering of the
electromagnetic waves, is derived from first principles and then solved
numerically for the total electromagnetic field. The results show that
spatially localized electromagnetic waves are possible in such a simple but
realistic disordered system. When localization occurs, a coherent behavior
appears and is revealed as a unique property differentiating localization from
either the residual absorption or the attenuation effects
Magnetic Fields in the Milky Way
This chapter presents a review of observational studies to determine the
magnetic field in the Milky Way, both in the disk and in the halo, focused on
recent developments and on magnetic fields in the diffuse interstellar medium.
I discuss some terminology which is confusingly or inconsistently used and try
to summarize current status of our knowledge on magnetic field configurations
and strengths in the Milky Way. Although many open questions still exist, more
and more conclusions can be drawn on the large-scale and small-scale components
of the Galactic magnetic field. The chapter is concluded with a brief outlook
to observational projects in the near future.Comment: 22 pages, 5 figures, to appear in "Magnetic Fields in Diffuse Media",
eds. E.M. de Gouveia Dal Pino and A. Lazaria
4pi Models of CMEs and ICMEs
Coronal mass ejections (CMEs), which dynamically connect the solar surface to
the far reaches of interplanetary space, represent a major anifestation of
solar activity. They are not only of principal interest but also play a pivotal
role in the context of space weather predictions. The steady improvement of
both numerical methods and computational resources during recent years has
allowed for the creation of increasingly realistic models of interplanetary
CMEs (ICMEs), which can now be compared to high-quality observational data from
various space-bound missions. This review discusses existing models of CMEs,
characterizing them by scientific aim and scope, CME initiation method, and
physical effects included, thereby stressing the importance of fully 3-D
('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication
in Solar Physics (SUN-360 topical issue
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
- …
