338 research outputs found

    Confirming Bank Liability in Letter of Credit Transactions: Whose Bank Is It Anyway?

    Get PDF
    Context. The abundance of deuterated molecules in a star-forming region is sensitive to the environment in which they are formed. Deuteration fractions, in other words the ratio of a species containing D to its hydrogenated counterpart, therefore provide a powerful tool for studying the physical and chemical evolution of a star-forming system. While local low-mass star-forming regions show very high deuteration ratios, much lower fractions are observed towards Orion and the Galactic centre. Astration of deuterium has been suggested as a possible cause for low deuteration in the Galactic centre. Aims. We derive methanol deuteration fractions at a number of locations towards the high-mass star-forming region NGC 6334I, located at a mean distance of 1.3 kpc, and discuss how these can shed light on the conditions prevailing during its formation. Methods. We use high sensitivity, high spatial and spectral resolution observations obtained with the Atacama Large Millimeter/ submillimeter Array to study transitions of the less abundant, optically thin, methanol-isotopologues: 13CH3OH, CH318OH, CH2DOH and CH3OD, detected towards NGC 6334I. Assuming local thermodynamic equilibrium (LTE) and excitation temperatures of ~120–330 K, we derive column densities for each of the species and use these to infer CH2DOH/CH3OH and CH3OD/CH3OH fractions. Results. We derive column densities in a range of (0.8–8.3) × 1017 cm−2 for 13CH3OH, (0.13–3.4) × 1017 cm−2 for CH318OH, (0.03–1.63) × 1017 cm−2 for CH2DOH and (0.15–5.5) × 1017 cm−2 for CH3OD in a ~1″ beam. Interestingly, the column densities of CH3OD are consistently higher than those of CH2DOH throughout the region by factors of 2–15. We calculate the CH2DOH to CH3OH and CH3OD to CH3OH ratios for each of the sampled locations in NGC 6334I. These values range from 0.03% to 0.34% for CH2DOH and from 0.27% to 1.07% for CH3OD if we use the 13C isotope of methanol as a standard; using the 18 O-methanol as a standard, decreases the ratios by factors of between two and three. Conclusions. All regions studied in this work show CH2DOH/CH3OH as well as CH2DOH/CH3OD values that are considerably lower than those derived towards low-mass star-forming regions and slightly lower than those derived for the high-mass star-forming regions in Orion and the Galactic centre. The low ratios indicate a grain surface temperature during formation ~30 K, for which the efficiency of the formation of deuterated species is significantly reduced. Therefore, astration of deuterium in the Galactic centre cannot be the explanation for its low deuteration ratio but rather the high temperatures characterising the region

    G11.92-0.61-MM2 : a bonafide massive prestellar core?

    Get PDF
    Supported by NSF AAPF (C.J.C., AST-1003134) and ERC (A.V., PALs 320620).Core accretion models of massive star formation require the existence of stable massive starless cores, but robust observational examples of such objects have proven elusive. We report subarcsecond-resolution Submillimeter Array (SMA) 1.3 mm, 1.1 mm, and 0.88 mm and Very Large Array 1.3 cm observations of an excellent massive starless core candidate, G11.92–0.61-MM2, initially identified in the course of studies of GLIMPSE Extended Green Objects (EGOs). Separated by ~7 farcs 2 from the nearby MM1 protostellar hot core, MM2 is a strong, compact dust continuum source (submillimeter spectral index α = 2.6 ± 0.1), but is devoid of star formation indicators. In contrast to MM1, MM2 has no masers, no centimeter continuum, and no (sub)millimeter wavelength line emission in ~24 GHz of bandwidth observed with the SMA, including N2H+(3-2), HCO+(3-2), and HCN(3-2). Additionally, there is no evidence for an outflow driven by MM2. The (sub)millimeter spectral energy distribution of MM2 is best fit with a dust temperature of ~17-19 K and luminosity of ~5-7 L☉. The combined physical properties of MM2, as inferred from its dust continuum emission, are extreme: M ≳ 30 M☉ within a radius 1025 cm–2 and nH_2 >109 cm–3. Comparison of the molecular abundance limits derived from our SMA observations with gas-grain chemical models indicates that extremely dense (n(H) ≫ 108 cm–3), cold (<20 K) conditions are required to explain the lack of observed (sub)millimeter line emission, consistent with the dust continuum results. Our data suggest that G11.92–0.61-MM2 is the best candidate for a bonafide massive prestellar core found to date, and a promising target for future higher-sensitivity observations.Publisher PDFPeer reviewe

    The extraordinary outburst in the massive protostellar system NGC 6334 I-MM1 : strong increase in mid-infrared continuum emission

    Get PDF
    Financial support for this work was provided by NASA through award #07_0156 issued by USRA. Based in part on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO program 089.C-0852(A).In recent years, dramatic outbursts have been identified toward massive protostars via infrared and millimeter dust continuum and molecular maser emission. The longest lived outburst (>6 yr) persists in NGC 6334 I-MM1, a deeply embedded object with no near-IR counterpart. Using FORCAST and HAWC+ on SOFIA, we have obtained the first mid-IR images of this field since the outburst began. Despite being undetected in pre-outburst ground-based 18 μm images, MM1 is now the brightest region at all three wavelengths (25, 37, and 53 μm), exceeding the UCHII region MM3 (NGC 6334 F). Combining the SOFIA data with ALMA imaging at four wavelengths, we construct a spectral energy distribution of the combination of MM1 and the nearby hot core MM2. The best-fit Robitaille radiative transfer model yields a luminosity of (4.9 ± 0.8) × 104 L⊙. Accounting for an estimated pre-outburst luminosity ratio MM1:MM2 = 2.1 ± 0.4, the luminosity of MM1 has increased by a factor of 16.3 ± 4.4. The pre-outburst luminosity implies a protostar of mass 6.7 M⊙, which can produce the ionizing photon rate required to power the pre-outburst HCHII region surrounding the likely outbursting protostar MM1B. The total energy and duration of the outburst exceed the S255IR-NIRS3 outburst by a factor of 3, suggesting a different scale of event involving expansion of the protostellar photosphere (to 20 R⊙), thereby supporting a higher accretion rate (0.0023 M⊙ yr−1) and reducing the ionizing photon rate. In the grid of hydrodynamic models of Meyer et al., the combination of outburst luminosity and magnitude (3) places the NGC 6334 I-MM1 event in the region of moderate total accretion (~0.1–0.3 M⊙) and hence long duration (~40–130 yr).PostprintPeer reviewe

    Modeling DNA Structure, Elasticity and Deformations at the Base-pair Level

    Full text link
    We present a generic model for DNA at the base-pair level. We use a variant of the Gay-Berne potential to represent the stacking energy between neighboring base-pairs. The sugar-phosphate backbones are taken into account by semi-rigid harmonic springs with a non-zero spring length. The competition of these two interactions and the introduction of a simple geometrical constraint leads to a stacked right-handed B-DNA-like conformation. The mapping of the presented model to the Marko-Siggia and the Stack-of-Plates model enables us to optimize the free model parameters so as to reproduce the experimentally known observables such as persistence lengths, mean and mean squared base-pair step parameters. For the optimized model parameters we measured the critical force where the transition from B- to S-DNA occurs to be approximately 140pN140{pN}. We observe an overstretched S-DNA conformation with highly inclined bases that partially preserves the stacking of successive base-pairs.Comment: 15 pages, 25 figures. submitted to PR

    (Sub)mm Interferometry Applications in Star Formation Research

    Full text link
    This contribution gives an overview about various applications of (sub)mm interferometry in star formation research. The topics covered are molecular outflows, accretion disks, fragmentation and chemical properties of low- and high-mass star-forming regions. A short outlook on the capabilities of ALMA is given as well.Comment: 20 pages, 7 figures, in proceedings to "2nd European School on Jets from Young Star: High Angular Resolution Observations". A high-resolution version of the paper can be found at http://www.mpia.de/homes/beuther/papers.htm

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance

    A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses

    Get PDF
    We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants

    Moderate drinking before the unit: medicine and life assurance in Britain and the US c.1860–1930

    Get PDF
    This article describes the way in which “Anstie’s Limit” – a particular definition of moderate drinking first defined in Britain in the 1860s by the physician Francis Edmund Anstie (1833–1874) – became established as a useful measure of moderate alcohol consumption. Becoming fairly well-established in mainstream Anglophone medicine by 1900, it was also communicated to the public in Britain, North America and New Zealand through newspaper reports. However, the limit also travelled to less familiar places, including life assurance offices, where a number of different strategies for separating moderate from excessive drinkers emerged from the dialogue between medicine and life assurance. Whilst these ideas of moderation seem to have disappeared into the background for much of the twentieth century, re-emerging as the “J-shaped” curve, these early developments anticipate many of the questions surrounding uses of the “unit” to quantify moderate alcohol consumption in Britain today. The article will therefore conclude by exploring some of the lessons of this story for contemporary discussions of moderation, suggesting that we should pay more attention to whether these metrics work, where they work and why
    corecore