28 research outputs found
Dynamic Provenance for SPARQL Update
While the Semantic Web currently can exhibit provenance information by using
the W3C PROV standards, there is a "missing link" in connecting PROV to storing
and querying for dynamic changes to RDF graphs using SPARQL. Solving this
problem would be required for such clear use-cases as the creation of version
control systems for RDF. While some provenance models and annotation techniques
for storing and querying provenance data originally developed with databases or
workflows in mind transfer readily to RDF and SPARQL, these techniques do not
readily adapt to describing changes in dynamic RDF datasets over time. In this
paper we explore how to adapt the dynamic copy-paste provenance model of
Buneman et al. [2] to RDF datasets that change over time in response to SPARQL
updates, how to represent the resulting provenance records themselves as RDF in
a manner compatible with W3C PROV, and how the provenance information can be
defined by reinterpreting SPARQL updates. The primary contribution of this
paper is a semantic framework that enables the semantics of SPARQL Update to be
used as the basis for a 'cut-and-paste' provenance model in a principled
manner.Comment: Pre-publication version of ISWC 2014 pape
Interfaces with a single growth inhomogeneity and anchored boundaries
The dynamics of a one dimensional growth model involving attachment and
detachment of particles is studied in the presence of a localized growth
inhomogeneity along with anchored boundary conditions. At large times, the
latter enforce an equilibrium stationary regime which allows for an exact
calculation of roughening exponents. The stochastic evolution is related to a
spin Hamiltonian whose spectrum gap embodies the dynamic scaling exponent of
late stages. For vanishing gaps the interface can exhibit a slow morphological
transition followed by a change of scaling regimes which are studied
numerically. Instead, a faceting dynamics arises for gapful situations.Comment: REVTeX, 11 pages, 9 Postscript figure
Exact Phase Diagram of a model with Aggregation and Chipping
We revisit a simple lattice model of aggregation in which masses diffuse and
coalesce upon contact with rate 1 and every nonzero mass chips off a single
unit of mass to a randomly chosen neighbour with rate . The dynamics
conserves the average mass density and in the stationary state the
system undergoes a nonequilibrium phase transition in the plane
across a critical line . In this paper, we show analytically that in
arbitrary spatial dimensions, exactly and hence,
remarkably, independent of dimension. We also provide direct and indirect
numerical evidence that strongly suggest that the mean field asymptotic answer
for the single site mass distribution function and the associated critical
exponents are super-universal, i.e., independent of dimension.Comment: 11 pages, RevTex, 3 figure
From dynamical scaling to local scale-invariance: a tutorial
Dynamical scaling arises naturally in various many-body systems far from
equilibrium. After a short historical overview, the elements of possible
extensions of dynamical scaling to a local scale-invariance will be introduced.
Schr\"odinger-invariance, the most simple example of local scale-invariance,
will be introduced as a dynamical symmetry in the Edwards-Wilkinson
universality class of interface growth. The Lie algebra construction, its
representations and the Bargman superselection rules will be combined with
non-equilibrium Janssen-de Dominicis field-theory to produce explicit
predictions for responses and correlators, which can be compared to the results
of explicit model studies.
At the next level, the study of non-stationary states requires to go over,
from Schr\"odinger-invariance, to ageing-invariance. The ageing algebra admits
new representations, which acts as dynamical symmetries on more general
equations, and imply that each non-equilibrium scaling operator is
characterised by two distinct, independent scaling dimensions. Tests of
ageing-invariance are described, in the Glauber-Ising and spherical models of a
phase-ordering ferromagnet and the Arcetri model of interface growth.Comment: 1+ 23 pages, 2 figures, final for
Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence
We provide a comprehensive report on scale-invariant fluctuations of growing
interfaces in liquid-crystal turbulence, for which we recently found evidence
that they belong to the Kardar-Parisi-Zhang (KPZ) universality class for 1+1
dimensions [Phys. Rev. Lett. 104, 230601 (2010); Sci. Rep. 1, 34 (2011)]. Here
we investigate both circular and flat interfaces and report their statistics in
detail. First we demonstrate that their fluctuations show not only the KPZ
scaling exponents but beyond: they asymptotically share even the precise forms
of the distribution function and the spatial correlation function in common
with solvable models of the KPZ class, demonstrating also an intimate relation
to random matrix theory. We then determine other statistical properties for
which no exact theoretical predictions were made, in particular the temporal
correlation function and the persistence probabilities. Experimental results on
finite-time effects and extreme-value statistics are also presented. Throughout
the paper, emphasis is put on how the universal statistical properties depend
on the global geometry of the interfaces, i.e., whether the interfaces are
circular or flat. We thereby corroborate the powerful yet geometry-dependent
universality of the KPZ class, which governs growing interfaces driven out of
equilibrium.Comment: 31 pages, 21 figures, 1 table; references updated (v2,v3); Fig.19
updated & minor changes in text (v3); final version (v4); J. Stat. Phys.
Online First (2012
Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.
BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362