120 research outputs found

    Effect of early sowing on the growth, yield and quality of sugar beet.

    Get PDF
    End of Project ReportExperiments have shown that yield of sugar is closely related to the amount of solar radiation intercepted by a sugar beet crop. Early sowing increases leaf area from May onwards when radiation is at its maximum and provides a basis for increasing yields. In the past, bolting has been an undesirable consequence of early sowing but some modern cultivars have good bolting resistance and can be sown early with a limited risk of bolting. This study, conducted from 1994 to 1998, compared the performance of two cultivars, Celt and Monofeb, at three sowing dates and three harvest dates. In replicated experiments, plant establishment, crop development, and root yield and quality were assessed. The effect of sowing date on solar radiation interception was studied. Effects of in-furrow pesticide application on pest numbers and plant damage were also measured. Plant establishment was influenced by sowing date with the early sowings generally giving lower plant numbers than the later ones. The cultivar Celt produced higher populations than Monofeb at all sowing dates. Early sowing increased the leaf area index (a measure of the ratio of leaf to land area) and consequently the amount of solar radiation intercepted. This was particularly so in June when solar radiation levels are highest. Early crop establishment provides the opportunity to exploit good weather conditions which may occur in April or May. Pest numbers generally were small at all the sites. Insecticide had a greater effect on pest numbers and plant damage than it had on plant establishment; the beneficial effects of pesticide were slightly more pronounced for the early and mid-season sowings than for later-sown beet. Seedling diseases were not a problem at any time of sowing. Poor emergence, where it occurred, was not associated with pre-emergence disease. Early to mid-March sowings produced significantly higher yields of roots and sugar than the early or late April sowings over the period of the experiment. Even in years when plant populations from the first sowings were much lower than subsequent sowings, yields tended to be at least equal to those of later sowings. Monofeb produced a slightly higher root yield than Celt, but because it had lower sugar contents there was no difference in sugar yields. Harvesting extended over the period from early October to mid-November and root growth and sugar production increased over that period irrespective of sowing date. Bolting was a problem in 1996 on the early-sown plots, particularly with the cultivar Celt.Teagasc acknowledges the support of Irish Sugar plc and Sugar Beet Levy Farmer Funds in the financing of this projec

    An assessment of facility-based care of diabetes, hypertension, and heart failure across western Kenya

    Get PDF
    Background: Low- and middle- income countries account for three-fourths of the global non- communicable disease related mortality. In response to the increasing number of non- communicable disease diagnoses in Kenya, the government released a national strategy for non- communicable disease in 2015. The purpose of this study was to assess facility-based care of diabetes, hypertension, and heart failure across western Kenya.Methods: A 71-question cross-sectional survey was administered among facility-based healthcare workers in Siaya County, western Kenya, between October 2015 and January 2016. All Level 4 and 5 facilities, as well as a cohort of lower-level facilities were surveyed.Results: Of the 21 health facilities surveyed, six (31.6%) had specific non-communicable disease clinics. Eleven of the 21 (52.4%) facilities had glucometers, and providers indicated that even these glucometers were often not functional. Three of the 21 facilities (14.3%) had a diabetic registry, one a functioning electrocardiogram machine, and one other a congestive heart failure registry.Conclusions: Facilities at every level were lacking equipment and medications expected by the Kenya’s Essential Package of Health Services. Improvement for follow up and referral services could be achieved through the development of comprehensive non-communicable disease registries

    Prospective blinded evaluation of a novel sensing methodology designed to reduce inappropriate shocks by the subcutaneous implantable cardioverter-defibrillator

    Get PDF
    Background: Most inappropriate shocks from the subcutaneous implantable cardioverter-defibrillator (S-ICD) are caused by cardiac oversensing. A novel sensing methodology, SMART Pass (SP; Boston Scientific Corporation, Natick, MA), aims to reduce cardiac oversensing. Objective: The purpose of this study was to evaluate the effect of SP on shocks in ambulatory patients with S-ICD. Methods: Patients implanted in 2015–2016 and enrolled in a remote patient monitoring system were included and followed for 1 year. Shocks were adjudicated by 3 independent blinded reviewers as appropriate or inappropriate. Shock incidence was calculated for patients with SP programmed enabled or disabled at implantation, censoring patients when SP programming changed or at the last transmission. The SP setting (enabled vs disabled) was modeled as a time-dependent Cox regression variable. Results: The cohort consisted of 1984 patients, and a total of 880 shocks were adjudicated. At implantation, SP was enabled in 655 patients (33%) and disabled in 1329 patients (67%). SP reduced the risk for the first inappropriate shock by 50% (P <.001) and the risk for all inappropriate shocks by 68% (P <.001) in multivariate analysis adjusted for age and device programming. The incidence of inappropriate shocks was 4.3% in the SP enabled arm vs 9.7% in the SP disabled arm. The incidence of appropriate shocks was similar (5.2

    The learning curve associated with the introduction of the subcutaneous implantable defibrillator

    Get PDF
    Aims: The subcutaneous implantable cardioverter defibrillator (S-ICD) was introduced to overcome complications related to transvenous leads. Adoption of the S-ICD requires implanters to learn a new implantation technique. The aim of this study was to assess the learning curve for S-ICD implanters with respect to implant-related complications, procedure time, and inappropriate shocks (IASs). Methods and results: In a pooled cohort from two clinical S-ICD databases, the IDE Trial and the EFFORTLESS Registry, complications, IASs at 180 days follow-up and implant procedure duration were assessed. Patients were grouped in quartiles based on experience of the implanter and Kaplan-Meier estimates of complication and IAS rates were calculated. A total of 882 patients implanted in 61 centres by 107 implanters with a median of 4 implants (IQR 1,8) were analysed. There were a total of 59 patients with complications and 48 patients with IAS. The complication rate decreased significantly from 9.8% in Quartile 1 (least experience) to 5.4% in Quartile 4 (most experience) (P = 0.02) and non-significantly for IAS from 7.9 to 4.8% (P = 0.10). Multivariable analysis demonstrated a hazard ratio of 0.78 (P = 0.045) for complications and 1.01 (P = 0.958) for IAS. Dual-zone programming increased with experience of the individual implanter (P 13 implants). Conclusion: There is a short and significant learning curve associated with physicians adopting the S-ICD. Performance stab

    DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the big bang

    Get PDF
    We present the Dark Energy Survey (DES) discovery of DES15E2mlf, the most distant superluminous supernova (SLSN) spectroscopically confirmed to date. The light curves and Gemini spectroscopy of DES15E2mlf indicate that it is a Type I superluminous supernova (SLSN-I) at z = 1.861 (a lookback time of ∼10 Gyr) and peaking at MAB = −22.3 ± 0.1 mag. Given the high redshift, our data probe the rest-frame ultraviolet (1400–3500 Å) properties of the SN, finding velocity of the C III feature changes by ∼5600 km s−1 over 14 d around maximum light. We find the host galaxy of DES15E2mlf has a stellar mass of 3.5+3.6 −2.4 × 109 M, which is more massive than the typical SLSN-I host galaxy

    Superluminous supernovae from the Dark Energy Survey

    Get PDF
    We present a sample of 21 hydrogen-free superluminous supernovae (SLSNe-I) and one hydrogen-rich SLSN (SLSN-II) detected during the five-year Dark Energy Survey (DES). These SNe, located in the redshift range 0.220 < z < 1.998, represent the largest homogeneously selected sample of SLSN events at high redshift. We present the observed g, r, i, z light curves for these SNe, which we interpolate using Gaussian processes. The resulting light curves are analysed to determine the luminosity function of SLSNe-I, and their evolutionary timescales. The DES SLSN-I sample significantly broadens the distribution of SLSN-I light-curve properties when combined with existing samples from the literature. We fit a magnetar model to our SLSNe, and find that this model alone is unable to replicate the behaviour of many of the bolometric light curves. We search the DES SLSN-I light curves for the presence of initial peaks prior to the main light-curve peak. Using a shock breakout model, our Monte Carlo search finds that 3 of our 14 events with pre-max data display such initial peaks. However, 10 events show no evidence for such peaks, in some cases down to an absolute magnitude of<−16, suggesting that such features are not ubiquitous to all SLSN-I events. We also identify a red pre-peak feature within the light curve of one SLSN, which is comparable to that observed within SN2018bsz

    The first Hubble diagram and cosmological constraints using superluminous supernovae

    Get PDF
    This paper has gone through internal review by the DES collaboration. It has Fermilab preprint number 19-115-AE and DES publication number 13387. We acknowledge support from EU/FP7- ERC grant 615929. RCN would like to acknowledge support from STFC grant ST/N000688/1 and the Faculty of Technology at the University of Portsmouth. LG was funded by the European Union’s Horizon 2020 Framework Programme under the Marie Skłodowska- Curie grant agreement no. 839090. This work has been partially supported by the Spanish grant PGC2018-095317-B-C21 within the European Funds for Regional Development (FEDER). Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundac¸ ˜ao Carlos Chagas Filho de Amparo `a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cient´ıfico e Tecnol´ogico and the Minist´erio da Ciˆencia, Tecnologia e Inovac¸ ˜ao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energ´eticas, Medioambientales y Tecnol ´ogicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgen¨ossische Technische Hochschule (ETH) Z¨urich, Fermi NationalAccelerator Laboratory, theUniversity of Illinois atUrbana- Champaign, the Institut de Ci`encies de l’Espai (IEEC/CSIC), the Institut de F´ısica d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universit¨at M¨unchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015- 71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV- 2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.We acknowledge support from the Australian Research Council Centre of Excellence for All-skyAstrophysics (CAASTRO), through project number CE110001020, and the Brazilian Instituto Nacional de Ciˆencia e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2). This paper has been authored by Fermi Research Alliance, LLC under Contract No.DE-AC02-07CH11359 with theU.S.Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the paper for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this paper, or allow others to do so, for United States Government purposes.We present the first Hubble diagram of superluminous supernovae (SLSNe) out to a redshift of two, together with constraints on the matter density, M, and the dark energy equation-of-state parameter, w(≡p/ρ). We build a sample of 20 cosmologically useful SLSNe I based on light curve and spectroscopy quality cuts. We confirm the robustness of the peak–decline SLSN I standardization relation with a larger data set and improved fitting techniques than previous works. We then solve the SLSN model based on the above standardization via minimization of the χ2 computed from a covariance matrix that includes statistical and systematic uncertainties. For a spatially flat cold dark matter ( CDM) cosmological model, we find M = 0.38+0.24 −0.19, with an rms of 0.27 mag for the residuals of the distance moduli. For a w0waCDM cosmological model, the addition of SLSNe I to a ‘baseline’ measurement consisting of Planck temperature together with Type Ia supernovae, results in a small improvement in the constraints of w0 and wa of 4 per cent.We present simulations of future surveys with 868 and 492 SLSNe I (depending on the configuration used) and show that such a sample can deliver cosmological constraints in a flat CDM model with the same precision (considering only statistical uncertainties) as current surveys that use Type Ia supernovae, while providing a factor of 2–3 improvement in the precision of the constraints on the time variation of dark energy, w0 and wa. This paper represents the proof of concept for superluminous supernova cosmology, and demonstrates they can provide an independent test of cosmology in the high-redshift (z > 1) universe.EU/FP7-ERC grant 615929STFC grant ST/N000688/1Faculty of Technology at the University of PortsmouthEuropean Union’s Horizon 2020 Framework Programme under the Marie Skłodowska- Curie grant agreement no. 839090Spanish grant PGC2018-095317-B-C21 within the European Funds for Regional Development (FEDER)U.S. Department of EnergyU.S. National Science FoundationMinistry of Science and Education of SpainScience and Technology Facilities Council of the United KingdomHigher Education Funding Council for EnglandNational Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign,Kavli Institute of Cosmological Physics at the University of ChicagoCenter for Cosmology and Astro-Particle Physics at the Ohio State UniversityMitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacão Carlos Chagas Filho de Amparo `a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciencia, Tecnologia e InovacãoDeutsche ForschungsgemeinschaftCollaborating Institutions in the Dark Energy Survey.National Science Foundation under grant numbers AST-1138766 and AST-1536171.T MINECO under grants AYA2015- 71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV- 2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union.CERCA program of the Generalitat de Catalunya.European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478.Australian Research Council Centre of Excellence for All-skyAstrophysics (CAASTRO), through project number CE110001020Brazilian Instituto Nacional de Ciˆencia e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2)Fermi Research Alliance, LLC under Contract No.DE-AC02-07CH11359 with theU.S.Department of Energy, Office of Science, Office of High Energy Physic

    Measurement of the splashback feature around SZ-selected Galaxy clusters with DES, SPT, and ACT

    Get PDF
    We present a detection of the splashback feature around galaxy clusters selected using the Sunyaev–Zel’dovich (SZ) signal. Recent measurements of the splashback feature around optically selected galaxy clusters have found that the splashback radius, rsp, is smaller than predicted by N-body simulations. A possible explanation for this discrepancy is that rsp inferred from the observed radial distribution of galaxies is affected by selection effects related to the optical cluster-finding algorithms. We test this possibility by measuring the splashback feature in clusters selected via the SZ effect in data from the South Pole Telescope SZ survey and the Atacama Cosmology Telescope Polarimeter survey. The measurement is accomplished by correlating these cluster samples with galaxies detected in the Dark Energy Survey Year 3 data. The SZ observable used to select clusters in this analysis is expected to have a tighter correlation with halo mass and to be more immune to projection effects and aperture-induced biases, potentially ameliorating causes of systematic error for optically selected clusters. We find that the measured rsp for SZ-selected clusters is consistent with the expectations from simulations, although the small number of SZ-selected clusters makes a precise comparison difficult. In agreement with previous work, when using optically selected redMaPPer clusters with similar mass and redshift distributions, rsp is ∼2σ smaller than in the simulations. These results motivate detailed investigations of selection biases in optically selected cluster catalogues and exploration of the splashback feature around larger samples of SZ-selected clusters. Additionally, we investigate trends in the galaxy profile and splashback feature as a function of galaxy colour, finding that blue galaxies have profiles close to a power law with no discernible splashback feature, which is consistent with them being on their first infall into the cluster

    First cosmology results using SNe Ia from the dark energy survey: analysis, systematic uncertainties, and validation

    Get PDF
    International audienceWe present the analysis underpinning the measurement of cosmological parameters from 207 spectroscopically classified type Ia supernovae (SNe Ia) from the first three years of the Dark Energy Survey Supernova Program (DES-SN), spanning a redshift range of 0.01

    First cosmology results using type Ia supernovae from the Dark Energy Survey: constraints on cosmological parameters

    Get PDF
    We present the first cosmological parameter constraints using measurements of type Ia supernovae (SNe Ia) from the Dark Energy Survey Supernova Program (DES-SN). The analysis uses a subsample of 207 spectroscopically confirmed SNe Ia from the first three years of DES-SN, combined with a low-redshift sample of 122 SNe from the literature. Our "DES-SN3YR" result from these 329 SNe Ia is based on a series of companion analyses and improvements covering SN Ia discovery, spectroscopic selection, photometry, calibration, distance bias corrections, and evaluation of systematic uncertainties. For a flat LCDM model we find a matter density Omega_m = 0.331 +_ 0.038. For a flat wCDM model, and combining our SN Ia constraints with those from the cosmic microwave background (CMB), we find a dark energy equation of state w = -0.978 +_ 0.059, and Omega_m = 0.321 +_ 0.018. For a flat w0waCDM model, and combining probes from SN Ia, CMB and baryon acoustic oscillations, we find w0 = -0.885 +_ 0.114 and wa = -0.387 +_ 0.430. These results are in agreement with a cosmological constant and with previous constraints using SNe Ia (Pantheon, JLA)
    corecore