424 research outputs found

    On the value of differential game with asymmetric control constraints

    Full text link
    A differential game with asymmetric constraints on the playersā€™ controls and an asymmetric cost functional is considered. In this game hard geometric constraints are imposed on the maximizer, whereas the minimizer is soft-constrained by including the control effort term into the cost functional. The sufficient condition is derived, subject to which the program maximin is the game value. In the proof, it is shown that the program maximin is the generalized solution of the Hamilton-Jacobi-Bellman partial differential equation. Examples are presented. Ā© 201

    Memory-delineated subtypes of schizophrenia: Relationship to clinical, neuroanatomical, and neurophysiological measures.

    Get PDF
    Memory performance was examined in patients with schizophrenia to determine whether subgroups conforming to cortical and subcortical dementias could be identified and, if so, whether subgroups differed on clinical, neuroanatomical, and neurophysiological measures. A cluster analysis of California Verbal Learning Test performance classified patients into 3 subgroups. Two groups exhibited memory deficits consistent with the corticalā€“subcortical distinction, whereas 1 group was unimpaired. Cortical patients tended to be male, and they had earlier illness onset, reduced temporal lobe gray matter, and hypometabolism. Subcortical patients had ventricular enlargement and more negative symptoms. Unimpaired patients had fewer negative symptoms and dorsal medial prefrontal hypermetabolism. The authors con-clude that categorizing patients on the basis of memory deficits may yield neurobiologically meaningful disease subtypes. There is increasing consensus that Kraepelinā€™s conceptu-alization of schizophrenia as a disorder characterized by disturbed cognition rather than psychotic symptomatology was fundamentally correct (see Sharma & Harvey, 2000, fo

    Influence of temporal lobe epilepsy and temporal lobe resection on olfaction

    Get PDF
    Although temporal lobe epilepsy (TLE) and resection (TLR) impact olfactory eloquent brain structures, their influences on olfaction remain enigmatic. We sought to more definitively assess the influences of TLE and TLR using three well-validated olfactory tests and the testsā€™ associations with the volume of numerous temporal lobe brain structures. The University of Pennsylvania Smell Identification Test and an odor detection threshold test were administered to 71 TLE patients and 71 age- and sex-matched controls; 69 TLE patients and controls received an odor discrimination/ memory test. Fifty-seven patients and 57 controls were tested on odor identification and threshold before and after TLR; 27 patients and 27 controls were similarly tested for odor detection/discrimination. Scores were compared using analysis of variance and correlated with pre- and post-operative volumes of the target brain structures. TLE was associated with bilateral deficits in all test measures. TLR further decreased function on the side ipsilateral to resection. The hippocampus and other structures were smaller on the focus side of the TLE subjects. Although post-operative volumetric decreases were evident in most measured brain structures, modest contralateral volumetric increases were observed in some cases. No meaningful correlations were evident pre- or post-operatively between the olfactory test scores and the structural volumes. In conclusion, we demonstrate that smell dysfunction is clearly a key element of both TLE and TLR, impacting odor identification, detection, and discrimination/memory. Whether our novel finding of significant post-operative increases in the volume of brain structures contralateral to the resection side reflects plasticity and compensatory processes requires further study

    Vertical zonation of testate amoebae in the Elatia Mires, northern Greece : palaeoecological evidence for a wetland response to recent climate change or autogenic processes?

    Get PDF
    The Elatia Mires of northern Greece are unique ecosystems of high conservation value. The mires are climatically marginal and may be sensitive to changing hydroclimate, while northern Greece has experienced a significant increase in aridity since the late twentieth century. To investigate the impact of recent climatic change on the hydrology of the mires, the palaeoecological record was investigated from three near-surface monoliths extracted from two sites. Testate amoebae were analysed as sensitive indicators of hydrology. Results were interpreted using transfer function models to provide quantitative reconstructions of changing water table depth and pH. AMS radiocarbon dates and 210Pb suggest the peats were deposited within the last c. 50 years, but do not allow a secure chronology to be established. Results from all three profiles show a distinct shift towards a more xerophilic community particularly noted by increases in Euglypha species. Transfer function results infer a distinct lowering of water tables in this period. A hydrological response to recent climate change is a tenable hypothesis to explain this change; however other possible explanations include selective test decay, vertical zonation of living amoebae, ombrotrophication and local hydrological change. It is suggested that a peatland response to climatic change is the most probable hypothesis, showing the sensitivity of marginal peatlands to recent climatic change

    Striatal intrinsic reinforcement signals during recognition memory: relationship to response bias and dysregulation in schizophrenia

    Get PDF
    Ventral striatum (VS) is a critical brain region for reinforcement learning and motivation, and VS hypofunction is implicated in psychiatric disorders including schizophrenia. Providing rewards or performance feedback has been shown to activate VS. Intrinsically motivated subjects performing challenging cognitive tasks are likely to engage reinforcement circuitry even in the absence of external feedback or incentives. However, such intrinsic reinforcement responses have received little attention, have not been examined in relation to behavioral performance, and have not been evaluated for impairment in neuropsychiatric disorders such as schizophrenia. Here we used fMRI to examine a challenging ā€œoldā€ vs. ā€œnewā€ visual recognition task in healthy subjects and patients with schizophrenia. Targets were unique fractal stimuli previously presented as salient distractors in a visual oddball task, producing incidental memory encoding. Based on the prediction error theory of reinforcement learning, we hypothesized that correct target recognition would activate VS in controls, and that this activation would be greater in subjects with lower expectation of responding correctly as indexed by a more conservative response bias. We also predicted these effects would be reduced in patients with schizophrenia. Consistent with these predictions, controls activated VS and other reinforcement processing regions during correct recognition, with greater VS activation in those with a more conservative response bias. Patients did not show either effect, with significant group differences suggesting hyporesponsivity in patients to internally generated feedback. These findings highlight the importance of accounting for intrinsic motivation and reward when studying cognitive tasks, and add to growing evidence of reward circuit dysfunction in schizophrenia that may impact cognition and function

    Reflections and projections on a decade of climate science

    Get PDF
    To mark the tenth anniversary of Nature Climate Change, we asked a selection of researchers across the broad range of climate change disciplines to share their thoughts on notable developments of the past decade, as well as their hopes and expectations for the coming years of discovery. Much has changed in the last 10 years since the Nature Climate Change inaugural issue in April 2011. The effects of climate change are now more apparent, global leaders have reached a climate agreement, and public awareness and engagement, particularly in the younger generation, continues to grow. Here, ten researchers discuss advances in their field, highlighting the progress and drawing attention to what still needs to be done

    Biological and geophysical feedbacks with fire in the Earth system

    Get PDF
    Roughly 3% of the Earth's land surface burns annually, representing a critical exchange of energy and matter between the land and atmosphere via combustion. Fires range from slow smouldering peat fires, to low-intensity surface fires, to intense crown fires, depending on vegetation structure, fuel moisture, prevailing climate, and weather conditions. While the links between biogeochemistry, climate and fire are widely studied within Earth system science, these relationships are also mediated by fuelsā€”namely plants and their litterā€”that are the product of evolutionary and ecological processes. Fire is a powerful selective force and, over their evolutionary history, plants have evolved traits that both tolerate and promote fire numerous times and across diverse clades. Here we outline a conceptual framework of how plant traits determine the flammability of ecosystems and interact with climate and weather to influence fire regimes. We explore how these evolutionary and ecological processes scale to impact biogeochemical and Earth system processes. Finally, we outline several research challenges that, when resolved, will improve our understanding of the role of plant evolution in mediating the fire feedbacks driving Earth system processes. Understanding current patterns of fire and vegetation, as well as patterns of fire over geological time, requires research that incorporates evolutionary biology, ecology, biogeography, and the biogeosciences
    • ā€¦
    corecore