18 research outputs found
Hadron calorimeter with MAPD readout in the NA61/SHINE experiment
The modular hadron calorimeter with micro-pixel avalanche photodiodes readout
for the NA61/SHINE experiment at the CERN SPS is presented. The calorimeter
consists of 44 independent modules with lead-scintillator sandwich structure.
The light from the scintillator tiles is captured by and transported with
WLS-fibers embedded in scintillator grooves. The construction provides a
longitudinal segmentation of the module in 10 sections with independent MAPD
readout. MAPDs with pixel density of /mm ensure good linearity of
calorimeter response in a wide dynamical range. The performance of the
calorimeter prototype in a beam test is reported
Pion emission from the T2K replica target: method, results and application
The T2K long-baseline neutrino oscillation experiment in Japan needs precise
predictions of the initial neutrino flux. The highest precision can be reached
based on detailed measurements of hadron emission from the same target as used
by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The
corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at
the CERN SPS using a replica of the T2K graphite target. In this paper details
of the experiment, data taking, data analysis method and results from the 2007
pilot run are presented. Furthermore, the application of the NA61/SHINE
measurements to the predictions of the T2K initial neutrino flux is described
and discussed.Comment: updated version as published by NIM
Measurement of negatively charged pion spectra in inelastic p+p interactions at = 20, 31, 40, 80 and 158 GeV/c
We present experimental results on inclusive spectra and mean multiplicities
of negatively charged pions produced in inelastic p+p interactions at incident
projectile momenta of 20, 31, 40, 80 and 158 GeV/c ( 6.3, 7.7,
8.8, 12.3 and 17.3 GeV, respectively). The measurements were performed using
the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton
Synchrotron.
Two-dimensional spectra are determined in terms of rapidity and transverse
momentum. Their properties such as the width of rapidity distributions and the
inverse slope parameter of transverse mass spectra are extracted and their
collision energy dependences are presented. The results on inelastic p+p
interactions are compared with the corresponding data on central Pb+Pb
collisions measured by the NA49 experiment at the CERN SPS.
The results presented in this paper are part of the NA61/SHINE ion program
devoted to the study of the properties of the onset of deconfinement and search
for the critical point of strongly interacting matter. They are required for
interpretation of results on nucleus-nucleus and proton-nucleus collisions.Comment: Numerical results available at: https://edms.cern.ch/document/1314605
Updates in v3: Updated version, as accepted for publicatio
NA61/SHINE facility at the CERN SPS: beams and detector system
NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose
experimental facility to study hadron production in hadron-proton,
hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton
Synchrotron. It recorded the first physics data with hadron beams in 2009 and
with ion beams (secondary 7Be beams) in 2011.
NA61/SHINE has greatly profited from the long development of the CERN proton
and ion sources and the accelerator chain as well as the H2 beamline of the
CERN North Area. The latter has recently been modified to also serve as a
fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous
components of the NA61/SHINE set-up were inherited from its predecessors, in
particular, the last one, the NA49 experiment. Important new detectors and
upgrades of the legacy equipment were introduced by the NA61/SHINE
Collaboration.
This paper describes the state of the NA61/SHINE facility - the beams and the
detector system - before the CERN Long Shutdown I, which started in March 2013
Measurements of Production Properties of K0S mesons and Lambda hyperons in Proton-Carbon Interactions at 31 GeV/c
Spectra of K0S mesons and Lambda hyperons were measured in p+C interactions
at 31 GeV/c with the large acceptance NA61/SHINE spectrometer at the CERN SPS.
The data were collected with an isotropic graphite target with a thickness of
4% of a nuclear interaction length. Interaction cross sections, charged pion
spectra, and charged kaon spectra were previously measured using the same data
set. Results on K0S and Lambda production in p+C interactions serve as
reference for the understanding of the enhancement of strangeness production in
nucleus-nucleus collisions. Moreover, they provide important input for the
improvement of neutrino flux predictions for the T2K long baseline neutrino
oscillation experiment in Japan. Inclusive production cross sections for K0S
and Lambda are presented as a function of laboratory momentum in intervals of
the laboratory polar angle covering the range from 0 up to 240 mrad. The
results are compared with predictions of several hadron production models. The
K0S mean multiplicity in production processes and the inclusive cross
section for K0S production were measured and amount to 0.127 +- 0.005 (stat) +-
0.022 (sys) and 29.0 +- 1.6 (stat) +- 5.0 (sys) mb, respectively
Measurement of negatively charged pion spectra in inelastic p+p interactions at plab= 20, 31, 40, 80 and 158 GeV/c
We present experimental results on inclusive spectra and mean multiplicities of negatively charged pions produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c ( √s= 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively). The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN super proton synchrotron. Two-dimensional spectra are determined in terms of rapidity and transverse momentum. Their properties such as the width of rapidity distributions and the inverse slope parameter of transverse mass spectra are extracted and their collision energy dependences are presented. The results on inelastic p+p interactions are compared with the corresponding data on central Pb+Pb collisions measured by the NA49 experiment at the CERN SPS. The results presented in this paper are part of the NA61/SHINE ion program devoted to the study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter. They are required for interpretation of results on nucleus–nucleus and proton–nucleus collisions
Measurement of negatively charged pion spectra in inelastic p+p interactions at = 20, 31, 40, 80 and 158 GeV/c
We present experimental results on inclusive spectra and mean multiplicities of negatively charged pions produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158GeV/c ( = 6.3, 7.7, 8.8, 12.3 and 17.3GeV, respectively). The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN super proton synchrotron. Two-dimensional spectra are determined in terms of rapidity and transverse momentum. Their properties such as the width of rapidity distributions and the inverse slope parameter of transverse mass spectra are extracted and their collision energy dependences are presented. The results on inelastic p+p interactions are compared with the corresponding data on central Pb+Pb collisions measured by the NA49 experiment at the CERN SPS. The results presented in this paper are part of the NA61/SHINE ion program devoted to the study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter. They are required for interpretation of results on nucleus–nucleus and proton–nucleus collisions.We present experimental results on inclusive spectra and mean multiplicities of negatively charged pions produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c ( 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively). The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. Two-dimensional spectra are determined in terms of rapidity and transverse momentum. Their properties such as the width of rapidity distributions and the inverse slope parameter of transverse mass spectra are extracted and their collision energy dependences are presented. The results on inelastic p+p interactions are compared with the corresponding data on central Pb+Pb collisions measured by the NA49 experiment at the CERN SPS. The results presented in this paper are part of the NA61/SHINE ion program devoted to the study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter. They are required for interpretation of results on nucleus-nucleus and proton-nucleus collisions
Measurement of negatively charged pion spectra in inelastic p+p interactions at plab=20, 31, 40, 80 and 158 GeV/c: NA61/SHINE Collaboration
We present experimental results on inclusive spectra and mean multiplicities of negatively charged pions produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c (s= 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively). The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN super proton synchrotron. Two-dimensional spectra are determined in terms of rapidity and transverse momentum. Their properties such as the width of rapidity distributions and the inverse slope parameter of transverse mass spectra are extracted and their collision energy dependences are presented. The results on inelastic p+p interactions are compared with the corresponding data on central Pb+Pb collisions measured by the NA49 experiment at the CERN SPS. The results presented in this paper are part of the NA61/SHINE ion program devoted to the study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter. They are required for interpretation of results on nucleus–nucleus and proton–nucleus collisions. © 2014, The Author(s)