112 research outputs found

    Doping Dependent Changes in Nitrogen 2pp States in the Diluted Magnetic Semiconductor Ga1−x_{1-x}Crx_{x}N

    Full text link
    We study the electronic structure of the recently discovered diluted magnetic semiconductor Ga1−x_{1-x}Crx_{x}N (xx = 0.01-0.10). A systematic study of the changes in the occupiedoccupied and unoccupiedunoccupied ligand (N) partial density of states (DOS) of the host lattice is carried out using N 1ss soft x-ray emission and absorption spectroscopy, respectively. X-ray absorption measurements confirm the wurtzite N 2pp DOS and substitutional doping of Cr into Ga-sites. Coupled changes in the occupiedoccupied and unoccupiedunoccupied N 2pp character DOS of Ga1−x_{1-x}Crx_{x}N identify states responsible for ferromagnetism consistent with band structure calculations.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Layer dependent band dispersion and correlations using tunable Soft X-ray ARPES

    Full text link
    Soft X-ray Angle-Resolved Photoemission Spectroscopy is applied to study in-plane band dispersions of Nickel as a function of probing depth. Photon energies between 190 and 780 eV were used to effectively probe up to 3-7 layers. The results show layer dependent band dispersion of the Delta_2 minority-spin band which crosses the Fermi level in 3 or more layers, in contrast to known top 1-2 layers dispersion obtained using ultra-violet rays. The layer dependence corresponds to an increased value of exchange splitting and suggests reduced correlation effects in the bulk compared to the surface.Comment: 7 pages, 3 figures Revised text and figur

    Direct Observation of Site-specific Valence Electronic Structure at Interface: SiO2/Si Interface

    Full text link
    Atom specific valence electronic structures at interface are elucidated successfully using soft x-ray absorption and emission spectroscopy. In order to demonstrate the versatility of this method, we investigated SiO2/Si interface as a prototype and directly observed valence electronic states projected at the particular atoms of the SiO2/Si interface; local electronic structure strongly depends on the chemical states of each atom. In addition we compared the experimental results with first-principle calculations, which quantitatively revealed the interfacial properties in atomic-scale.Comment: 4 pages, 3 figure

    Simulation of ultra-fast dynamics effects in resonant inelastic x-ray scattering of gas-phase water

    Get PDF
    Resonant inelastic soft X-ray scattering maps for the water molecule are simulated by combining quantum chemical calculations of X-ray spectroscopy with ab initio molecular dynamics. The resonant inelastic scattering intensity is computed using the Kramers–Heisenberg formalism, which accounts for channel interference and polarization anisotropy. Algebraic diagrammatic construction and density functional theory-based approaches for the calculation of the X-ray transition energies and transition dipole moments of the absorption and emission processes are explored. Conformational sampling of both ground and core-excited intermediate states allows the effects of ultrafast dynamics on the computed maps to be studied. Overall, it is shown how resonant inelastic scattering maps can be simulated with a computationally efficient protocol that can be extended to investigate larger systems

    X-ray Diffraction and Molecular Dynamics Study of Medium-range Order in Ambient and Hot Water

    Full text link
    We have developed x-ray diffraction measurements with high energy-resolution and accuracy to study water structure at three different temperatures (7, 25 and 66 C) under normal pressure. Using a spherically curved Ge crystal an energy resolution better than 15 eV has been achieved which eliminates influence from Compton scattering. The high quality of the data allows a precise oxygen-oxygen pair correlation function (PCF) to be directly derived from the Fourier transform of the experimental data resolving shell structure out to ~12 {\AA}, i.e. 5 hydration shells. Large-scale molecular dynamics (MD) simulations using the TIP4P/2005 force-field reproduce excellently the experimental shell-structure in the range 4-12 {\AA} although less agreement is seen for the first peak in the PCF. The Local Structure Index [J. Chem. Phys. 104, 7671 (1996)] identifies a tetrahedral minority giving the intermediate-range oscillations in the PCF and a disordered majority providing a more featureless background in this range. The current study supports the proposal that the structure of liquid water, even at high temperatures, can be described in terms of a two-state fluctuation model involving local structures related to the high-density and low-density forms of liquid water postulated in the liquid-liquid phase transition hypothesis.Comment: Submitted to Phys. Chem. Chem. Phy

    Immittance Matching for Multi-dimensional Open-system Photonic Crystals

    Full text link
    An electromagnetic (EM) Bloch wave propagating in a photonic crystal (PC) is characterized by the immittance (impedance and admittance) of the wave. The immittance is used to investigate transmission and reflection at a surface or an interface of the PC. In particular, the general properties of immittance are useful for clarifying the wave propagation characteristics. We give a general proof that the immittance of EM Bloch waves on a plane in infinite one- and two-dimensional (2D) PCs is real when the plane is a reflection plane of the PC and the Bloch wavevector is perpendicular to the plane. We also show that the pure-real feature of immittance on a reflection plane for an infinite three-dimensional PC is good approximation based on the numerical calculations. The analytical proof indicates that the method used for immittance matching is extremely simplified since only the real part of the immittance function is needed for analysis without numerical verification. As an application of the proof, we describe a method based on immittance matching for qualitatively evaluating the reflection at the surface of a semi-infinite 2D PC, at the interface between a semi-infinite slab waveguide (WG) and a semi-infinite 2D PC line-defect WG, and at the interface between a semi-infinite channel WG and a semi-infinite 2D PC slab line-defect WG.Comment: 8 pages, 6 figure

    Numerical optimization of spherical variable-line-spacing grating X-ray spectrometers

    Get PDF
    Operation of an X-ray spectrometer based on a spherical variable-line-spacing grating is analyzed using dedicated ray-tracing software allowing fast optimization of the grating parameters and spectrometer geometry

    X ray emission spectroscopy of bulk liquid water in no man s land

    Get PDF
    The structure of bulk liquid water was recently probed by x ray scattering below the temperature limit of homogeneous nucleation TH of amp; 8764;232 K [J. A. Sellberg et al., Nature 510, 381 384 2014 ]. Here, we utilize a similar approach to study the structure of bulk liquid water below TH using oxygen K edge x ray emission spectroscopy XES . Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387 400 2008 ] at higher temperatures, we expected the ratio of the 1b1 amp; 8242; and 1b1 amp; 8242; amp; 8242; peaks associated with the lone pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen H bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more importan

    Ab initio van der Waals interactions in simulations of water alter structure from mainly tetrahedral to high-density-like

    Get PDF
    The structure of liquid water at ambient conditions is studied in ab initio molecular dynamics simulations using van der Waals (vdW) density-functional theory, i.e. using the new exchange-correlation functionals optPBE-vdW and vdW-DF2. Inclusion of the more isotropic vdW interactions counteracts highly directional hydrogen-bonds, which are enhanced by standard functionals. This brings about a softening of the microscopic structure of water, as seen from the broadening of angular distribution functions and, in particular, from the much lower and broader first peak in the oxygen-oxygen pair-correlation function (PCF), indicating loss of structure in the outer solvation shells. In combination with softer non-local correlation terms, as in the new parameterization of vdW-DF, inclusion of vdW interactions is shown to shift the balance of resulting structures from open tetrahedral to more close-packed. The resulting O-O PCF shows some resemblance with experiment for high-density water (A. K. Soper and M. A. Ricci, Phys. Rev. Lett., 84:2881, 2000), but not directly with experiment for ambient water. However, an O-O PCF consisting of a linear combination of 70% from vdW-DF2 and 30% from experiment on low-density liquid water reproduces near-quantitatively the experimental O-O PCF for ambient water, indicating consistency with a two-liquid model with fluctuations between high- and low-density regions
    • …
    corecore