The structure of liquid water at ambient conditions is studied in ab initio
molecular dynamics simulations using van der Waals (vdW) density-functional
theory, i.e. using the new exchange-correlation functionals optPBE-vdW and
vdW-DF2. Inclusion of the more isotropic vdW interactions counteracts highly
directional hydrogen-bonds, which are enhanced by standard functionals. This
brings about a softening of the microscopic structure of water, as seen from
the broadening of angular distribution functions and, in particular, from the
much lower and broader first peak in the oxygen-oxygen pair-correlation
function (PCF), indicating loss of structure in the outer solvation shells. In
combination with softer non-local correlation terms, as in the new
parameterization of vdW-DF, inclusion of vdW interactions is shown to shift the
balance of resulting structures from open tetrahedral to more close-packed. The
resulting O-O PCF shows some resemblance with experiment for high-density water
(A. K. Soper and M. A. Ricci, Phys. Rev. Lett., 84:2881, 2000), but not
directly with experiment for ambient water. However, an O-O PCF consisting of a
linear combination of 70% from vdW-DF2 and 30% from experiment on low-density
liquid water reproduces near-quantitatively the experimental O-O PCF for
ambient water, indicating consistency with a two-liquid model with fluctuations
between high- and low-density regions