29 research outputs found
Quadruple-peaked spectral line profiles as a tool to constrain gravitational potential of shell galaxies
Stellar shells observed in many giant elliptical and lenticular as well as a
few spiral and dwarf galaxies, presumably result from galaxy mergers.
Line-of-sight velocity distributions of the shells could, in principle, if
measured with a sufficiently high S/N, constitute one of methods to constrain
the gravitational potential of the host galaxy. Merrifield & Kuijken (1998)
predicted a double-peaked line profile for stationary shells resulting from a
nearly radial minor merger. In this paper, we aim at extending their analysis
to a more realistic case of expanding shells, inherent to the merging process,
whereas we assume the same type of merger and the same orbital geometry. We use
analytical approach as well as test particle simulations to predict the
line-of-sight velocity profile across the shell structure. Simulated line
profiles are convolved with spectral PSFs to estimate the peak detectability.
The resulting line-of-sight velocity distributions are more complex than
previously predicted due to non-zero phase velocity of the shells. In
principle, each of the Merrifield & Kuijken (1998) peaks splits into two,
giving a quadruple-peaked line profile, which allows more precise determination
of the potential of the host galaxy and, moreover, contains additional
information. We find simple analytical expressions that connect the positions
of the four peaks of the line profile and the mass distribution of the galaxy,
namely the circular velocity at the given shell radius and the propagation
velocity of the shell. The analytical expressions were applied to a
test-particle simulation of a radial minor merger and the potential of the
simulated host galaxy was successfully recovered. The shell kinematics can thus
become an independent tool to determine the content and distribution of the
dark matter in shell galaxies, up to ~100 kpc from the center of the host
galaxy.Comment: 15 pages, 16 figures | v2: accepted for publication in A&A, minor
language correction
Satellite DNA in Paphiopedilum subgenus Parvisepalum as revealed by high-throughput sequencing and fluorescent in situ hybridization
Background: Satellite DNA is a rapidly diverging, largely repetitive DNA component of many eukaryotic genomes. Here we analyse the evolutionary dynamics of a satellite DNA repeat in the genomes of a group of Asian subtropical lady slipper orchids (Paphiopedilum subgenus Parvisepalum and representative species in the other subgenera/sections across the genus). A new satellite repeat in Paphiopedilum subgenus Parvisepalum, SatA, was identified and characterized using the RepeatExplorer pipeline in HiSeq Illumina reads from P. armeniacum (2n = 26). Reconstructed monomers were used to design a satellite-specific fluorescent in situ hybridization (FISH) probe. The data were also analysed within a phylogenetic framework built using the internal transcribed spacer (ITS) sequences of 45S nuclear ribosomal DNA.
Results: SatA comprises c. 14.5% of the P. armeniacum genome and is specific to subgenus Parvisepalum. It is composed of four primary monomers that range from 230 to 359 bp and contains multiple inverted repeat regions with hairpin loop motifs. A new karyotype of P. vietnamense (2n = 28) is presented and shows that the chromosome number in subgenus Parvisepalum is not conserved at 2n = 26, as previously reported. The physical locations of SatA sequences were visualised on the chromosomes of all seven Paphiopedilum species of subgenus Parvisepalum (2n = 26–28), together with the 5S and 45S rDNA loci using FISH. The SatA repeats were predominantly localisedin the centromeric, peri-centromeric and sub-telocentric chromosome regions, but the exact distribution pattern was species-specific.
Conclusions: We conclude that the newly discovered, highly abundant and rapidly evolving satellite sequence SatA is specific to Paphiopedilum subgenus Parvisepalum. SatA and rDNA chromosomal distributions are characteristic of species, and comparisons between species reveal that the distribution patterns generate a strong phylogenetic signal. We also conclude that the ancestral chromosome number of subgenus Parvisepalum and indeed of all Paphiopedilum could be either 2n = 26 or 28, if P. vietnamense is sister to all species in the subgenus as suggested by the ITS data