39 research outputs found

    Data report: permeability measurements under confining pressure, Expeditions 315 and 316, Nankai Trough.

    No full text
    International audiencePermeability of six samples from sites C0001 and C0006 were measured in a triaxial cell under effective hydrostatic confining pressure from 1 to 30 MPa. Our results indicate that the initial permeability at 1 MPa of effective confining pressure ranges from 4.6e-18 to 1.8e-19 m2 depending on depth. Actually permeability decreases with increasing depth also corresponding to a decrease of porosity from 62 to 43%. The permeability vs. depth trend is similar for both sites. When the effective confining pressure is increased from 1 to 30 MPa, the permeability decreases for all samples, a decrease interpreted by microfracture closure. However this trend shows some variability indicating a finer microstructural control depending on the lithological origin of the sample

    The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling

    Get PDF
    The accuracy of ground deformation modelling at active volcanoes is a principal requirement in volcanic hazard mitigation. However, the reliability of such models relies on the accuracy of the rock physical property (permeability and elastic moduli) input parameters. Unfortunately, laboratory-derived values on representative rocks are usually rare. To this end we have performed a systematic laboratory study on the influence of pressure and temperature on the permeability and elastic moduli of samples from the two most widespread lithified pyroclastic deposits at the Campi Flegrei volcanic district, Italy. Our data show that the water permeability of Neapolitan Yellow Tuff and a tuff from the Campanian Ignimbrite differ by about 1.5 orders of magnitude. As pressure (depth) increases beyond the critical point for inelastic pore collapse (at an effective pressure of 10–15 MPa, or a depth of about 750 m), permeability and porosity decrease significantly, and ultrasonic wave velocities and dynamic elastic moduli increase significantly. Increasing the thermal stressing temperature increases the permeability and decreases the ultrasonic wave velocities and dynamic elastic moduli of the Neapolitan Yellow Tuff; whereas the tuff from the Campanian Ignimbrite remains unaffected. This difference is due to the presence of thermally unstable zeolites within the Neapolitan Yellow Tuff. For both rocks we also find, under the same pressure conditions, that the dynamic (calculated from ultrasonic wave velocities) and static (calculated from triaxial stress-strain data) elastic moduli differ significantly. The choice of elastic moduli in ground deformation modelling is therefore an important consideration. While we urge that these new laboratory data should be considered in routine ground deformation modelling, we highlight the challenges for ground deformation modelling based on the heterogeneous nature (vertically and laterally) of the rocks that comprise the caldera at Campi Flegrei

    Interpretation of porosity and LWD resistivity from the Nankai accretionary wedge in light of clay physicochemical properties: Evidence for erosion and local overpressuring

    Get PDF
    International audienceIn this study, we used porosity to assess the compaction state of the Nankai accretionary wedge sediments and any implications for stress and pore pressure. However, hydrous minerals affect porosity measurements, and accounting for them is essential toward defining the interstitial porosity truly representative of the compaction state. The water content of sediments was measured in core samples and estimated from logging data using a resistivity model for shale. We used the cation exchange capacity to correct the porosity data for the amount of water bound to clay minerals and to correct the porosity estimates for the surface conductivity of hydrous minerals. The results indicate that several apparent porosity anomalies are significantly reduced by this correction, implying that they are in part artifacts from hydrous minerals. The correction also improves the fit of porosity estimated from logging-while-drilling (LWD) resistivity data to porosity measured on cores. Low overall porosities at the toe of the accretionary wedge and in the splay fault area are best explained by erosion, and we estimated the quantity of sediments eroded within the splay fault area by comparing porosity-effective stress relationships of the sediments to a reference curve. Additionally, a comparison of LWD data with core data (resistivity and P wave velocity) obtained at Site C0001 landward of the mega-splay fault area, suggested a contribution from the fracture porosity to in situ properties on the formation

    KG2B, a collaborative benchmarking exercise for estimating the permeability of the Grimsel granodiorite - Part 1: Measurements, pressure dependence and pore-fluid effects

    Get PDF
    Measuring the permeability of tight rocks remains a challenging task. In addition to the traditional sources of errors that affect more permeable formations (e.g. sample selection, non-representative specimens, disturbance introduced during sample acquisition and preparation), tight rocks can be particularly prone to solid–fluid interactions and thus more sensitive to the methods, procedures and techniques used to measure permeability. To address this problem, it is desirable to collect, for a single material, measurements obtained by different methods and pore-fluids. For that purpose a collaborative benchmarking exercise involving 24 laboratories was organized for measuring the permeability of a single low permeability material, the Grimsel granodiorite, at a common effective confining pressure (5 MPa). The objectives of the benchmark were: (i) to compare the results for a given method, (ii) to compare the results between different methods, (iii) to analyze the accuracy of each method, (iv) to study the influence of experimental conditions (especially the nature of pore fluid), (v) to discuss the relevance of indirect methods and models and finally (vi) to suggest good practice for low permeability measurements. In total 39 measurements were collected that allowed us to discuss the influence of (i) pore-fluid, (ii) measurement method, (iii) sample size and (iv) pressure sensitivity. Discarding some outliers from the bulk data set (4 out of 39) an average permeability of 1.11 × 10−18 mÂČ with a standard deviation of 0.57 × 10−18 mÂČ was obtained. The most striking result was the large difference in permeability for gas measurements compared to liquid measurements. Regardless of the method used, gas permeability was higher than liquid permeability by a factor approximately 2 (kgas = 1.28 × 10−18 mÂČ compared to kliquid = 0.65 × 10−18 mÂČ). Possible explanations are that (i) liquid permeability was underestimated due to fluid-rock interactions (ii) gas permeability was overestimated due to insufficient correction for gas slippage and/or (iii) gases and liquids do not probe exactly the same porous networks. The analysis of Knudsen numbers shows that the gas permeability measurements were performed in conditions for which the Klinkenberg correction is sufficient. Smaller samples had a larger scatter of permeability values, suggesting that their volume were below the Representative Elementary Volume. The pressure dependence of permeability was studied by some of the participating teams in the range 1–30 MPa and could be fitted to an exponential law k = ko.exp(–γPeff) with Îł = 0.093 MPa−1. Good practice rules for measuring permeability in tight materials are also provided

    Physical property relationships of the Rotokawa Andesite, a significant geothermal reservoir rock in the Taupo Volcanic Zone, New Zealand

    Get PDF
    Background Geothermal systems are commonly hosted in highly altered and fractured rock. As a result, the relationships between physical properties such as strength and permeability can be complex. Understanding such properties can assist in the optimal utilization of geothermal reservoirs. To resolve this issue, detailed laboratory studies on core samples from active geothermal reservoirs are required. This study details the results of the physical property investigations on Rotokawa Andesite which hosts a significant geothermal reservoir. Methods We have characterized the microstructure (microfracture density), porosity, density, permeability, elastic wave velocities, and strength of core from the high-enthalpy Rotokawa Andesite geothermal reservoir under controlled laboratory conditions. We have built empirical relationships from our observations and also used a classical micromechanical model for brittle failure. Further, we compare our results to a Kozeny-Carman permeability model to better constrain the fluid flow behavior of the rocks. Results We show that the strength, porosity, elastic moduli, and permeability are greatly influenced by pre-existing fracture occurrence within the andesite. Increasing porosity (or microfracture density) correlates well to a decreasing uniaxial compressive strength, increasing permeability, and a decreasing compressional wave velocity. Conclusions Our results indicate that properties readily measurable by borehole geophysical logging (such as porosity and acoustic velocities) can be used to constrain more complex and pertinent properties such as strength and permeability. The relationships that we have provided can then be applied to further understand processes in the Rotokawa reservoir and other reservoirs worldwide

    Deformation and failure in high porosity carbonate rocks: Mechanical data and microstructural observations

    No full text
    see Abstract VolumeIstituto Nazionale di Geofisica e Vulcanologia, Italy (INGV) Centre National de la Recherche Scientifique (CNRS) ExxonMobil Upstream Research CompanyUnpublishedErice, Italyope
    corecore