175 research outputs found

    Perceived intensity of somatosensory cortical electrical stimulation

    Get PDF
    Artificial sensations can be produced by direct brain stimulation of sensory areas through implanted microelectrodes, but the perceptual psychophysics of such artificial sensations are not well understood. Based on prior work in cortical stimulation, we hypothesized that perceived intensity of electrical stimulation may be explained by the population response of the neurons affected by the stimulus train. To explore this hypothesis, we modeled perceived intensity of a stimulation pulse train with a leaky neural integrator. We then conducted a series of two-alternative forced choice behavioral experiments in which we systematically tested the ability of rats to discriminate frequency, amplitude, and duration of electrical pulse trains delivered to the whisker barrel somatosensory cortex. We found that the model was able to predict the performance of the animals, supporting the notion that perceived intensity can be largely accounted for by spatiotemporal integration of the action potentials evoked by the stimulus train

    Breast cancer management pathways during the COVID-19 pandemic: outcomes from the UK 'Alert Level 4' phase of the B-MaP-C study

    Get PDF
    BACKGROUND: The B-MaP-C study aimed to determine alterations to breast cancer (BC) management during the peak transmission period of the UK COVID-19 pandemic and the potential impact of these treatment decisions. METHODS: This was a national cohort study of patients with early BC undergoing multidisciplinary team (MDT)-guided treatment recommendations during the pandemic, designated 'standard' or 'COVID-altered', in the preoperative, operative and post-operative setting. FINDINGS: Of 3776 patients (from 64 UK units) in the study, 2246 (59%) had 'COVID-altered' management. 'Bridging' endocrine therapy was used (n = 951) where theatre capacity was reduced. There was increasing access to COVID-19 low-risk theatres during the study period (59%). In line with national guidance, immediate breast reconstruction was avoided (n = 299). Where adjuvant chemotherapy was omitted (n = 81), the median benefit was only 3% (IQR 2-9%) using 'NHS Predict'. There was the rapid adoption of new evidence-based hypofractionated radiotherapy (n = 781, from 46 units). Only 14 patients (1%) tested positive for SARS-CoV-2 during their treatment journey. CONCLUSIONS: The majority of 'COVID-altered' management decisions were largely in line with pre-COVID evidence-based guidelines, implying that breast cancer survival outcomes are unlikely to be negatively impacted by the pandemic. However, in this study, the potential impact of delays to BC presentation or diagnosis remains unknown

    Contribution of Direct Heating, Thermal Conduction and Perfusion During Radiofrequency and Microwave Ablation

    Get PDF
    Both radiofrequency (RF) and microwave (MW) ablation devices are clinically used for tumor ablation. Several studies report less dependence on vascular mediated cooling of MW compared to RF ablation. We created computer models of a cooled RF needle electrode, and a dipole MW antenna to determine differences in tissue heat transfer

    FAHN/SPG35 : a narrow phenotypic spectrum across disease classifications

    Get PDF
    The endoplasmic reticulum enzyme fatty acid 2-hydroxylase (FA2H) plays a major role in the formation of 2-hydroxy glycosphingolipids, main components of myelin. FA2H deficiency in mice leads to severe central demyelination and axon loss. In humans it has been associated with phenotypes from the neurodegeneration with brain iron accumulation (fatty acid hydroxylase-associated neurodegeneration, FAHN), hereditary spastic paraplegia (HSP type SPG35) and leukodystrophy (leukodystrophy with spasticity and dystonia) spectrum. We performed an in-depth clinical and retrospective neurophysiological and imaging study in a cohort of 19 cases with biallelic FA2H mutations. FAHN/SPG35 manifests with early childhood onset predominantly lower limb spastic tetraparesis and truncal instability, dysarthria, dysphagia, cerebellar ataxia, and cognitive deficits, often accompanied by exotropia and movement disorders. The disease is rapidly progressive with loss of ambulation after a median of 7 years after disease onset and demonstrates little interindividual variability. The hair of FAHN/SPG35 patients shows a bristle-like appearance; scanning electron microscopy of patient hair shafts reveals deformities (longitudinal grooves) as well as plaque-like adhesions to the hair, likely caused by an abnormal sebum composition also described in a mouse model of FA2H deficiency. Characteristic imaging features of FAHN/SPG35 can be summarized by the WHAT' acronym: white matter changes, hypointensity of the globus pallidus, ponto-cerebellar atrophy, and thin corpus callosum. At least three of four imaging features are present in 85% of FA2H mutation carriers. Here, we report the first systematic, large cohort study in FAHN/SPG35 and determine the phenotypic spectrum, define the disease course and identify clinical and imaging biomarkers

    A review of the design and clinical evaluation of the ShefStim array-based functional electrical stimulation system

    Get PDF
    Functional electrical stimulation has been shown to be a safe and effective means of correcting foot 12 drop of central neurological origin. Current surface-based devices typically consist of a single channel stimulator, 13 a sensor for determining gait phase and a cuff, within which is housed the anode and cathode. The cuff-mounted 14 electrode design reduces the likelihood of large errors in electrode placement, but the user is still fully responsible 15 for selecting the correct stimulation level each time the system is donned. Researchers have investigated different 16 approaches to automating aspects of setup and/or use, including recent promising work based on iterative learning 17 techniques. This paper reports on the design and clinical evaluation of an electrode array-based FES system for 18 the correction of drop foot, ShefStim. The paper reviews the design process from proof of concept lab-based study, 19 through modelling of the array geometry and interface layer to array search algorithm development. Finally, the 20 paper summarises two clinical studies involving patients with drop foot. The results suggest that the ShefStim 21 system with automated setup produces results which are comparable with clinician setup of conventional systems. 22 Further, the final study demonstrated that patients can use the system without clinical supervision. When used 23 unsupervised, setup time was 14 minutes (9 minutes for automated search plus 5 minutes for donning the 24 equipment), although this figure could be reduced significantly with relatively minor changes to the design

    Bolstering Confidence in Obesity Prevention and Treatment Counseling for Resident and Community Pediatricians

    Get PDF
    Objective- To assess whether equipping resident pediatricians and community pediatricians with both training and practical tools improves their perceived confidence, ease, and frequency of obesity related counseling to patients. Methods- In 2005-2006, resident pediatricians (n = 49) and community pediatricians (n=18) received training regarding three evidence-based obesity prevention/treatment tools and responded to pre-and post-intervention questionnaires. We analyzed changes in reported mean confidence, ease, and frequency of dietary, physical activity, and weight status counseling. Results- Baseline scores of confidence, ease, and frequency of counseling were higher in community pediatricians than residents. Mean scores increased significantly in the combined group, among residents only, and trended towards improvement in the community pediatricians following the intervention. Means for "control" questions were unchanged. Conclusion- Training and tools for residents and community pediatricians improved their confidence, ease, and frequency of obesity-related counseling. Practice Implications- This study demonstrates that when feasible and appropriate tools and training were provided through a simple intervention, physicians gained confidence and ease and increased their counseling frequency. The results here suggest that widespread implementation of such educational interventions for community practitioners and practitioners in training could change the way physicians counsel patients to prevent the often frustrating problem of childhood obesity. Originally published Patient Education and Counseling, Vol. 73, No. 2, Nov 200

    Training in childhood obesity management in the United States: a survey of pediatric, internal medicine-pediatrics and family medicine residency program directors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information about the availability and effectiveness of childhood obesity training during residency is limited.</p> <p>Methods</p> <p>We surveyed residency program directors from pediatric, internal medicine-pediatrics (IM-Peds), and family medicine residency programs between September 2007 and January 2008 about childhood obesity training offered in their programs.</p> <p>Results</p> <p>The response rate was 42.2% (299/709) and ranged by specialty from 40.1% to 45.4%. Overall, 52.5% of respondents felt that childhood obesity training in residency was extremely important, and the majority of programs offered training in aspects of childhood obesity management including prevention (N = 240, 80.3%), diagnosis (N = 282, 94.3%), diagnosis of complications (N = 249, 83.3%), and treatment (N = 242, 80.9%). However, only 18.1% (N = 54) of programs had a formal childhood obesity curriculum with variability across specialties. Specifically, 35.5% of IM-Peds programs had a formal curriculum compared to only 22.6% of pediatric and 13.9% of family medicine programs (p < 0.01). Didactic instruction was the most commonly used training method but was rated as only somewhat effective by 67.9% of respondents using this method. The most frequently cited significant barrier to implementing childhood obesity training was competing curricular demands (58.5%).</p> <p>Conclusions</p> <p>While most residents receive training in aspects of childhood obesity management, deficits may exist in training quality with a minority of programs offering a formal childhood obesity curriculum. Given the high prevalence of childhood obesity, a greater emphasis should be placed on development and use of effective training strategies suitable for all specialties training physicians to care for children.</p

    Hair Cell Bundles: Flexoelectric Motors of the Inner Ear

    Get PDF
    Microvilli (stereocilia) projecting from the apex of hair cells in the inner ear are actively motile structures that feed energy into the vibration of the inner ear and enhance sensitivity to sound. The biophysical mechanism underlying the hair bundle motor is unknown. In this study, we examined a membrane flexoelectric origin for active movements in stereocilia and conclude that it is likely to be an important contributor to mechanical power output by hair bundles. We formulated a realistic biophysical model of stereocilia incorporating stereocilia dimensions, the known flexoelectric coefficient of lipid membranes, mechanical compliance, and fluid drag. Electrical power enters the stereocilia through displacement sensitive ion channels and, due to the small diameter of stereocilia, is converted to useful mechanical power output by flexoelectricity. This motor augments molecular motors associated with the mechanosensitive apparatus itself that have been described previously. The model reveals stereocilia to be highly efficient and fast flexoelectric motors that capture the energy in the extracellular electro-chemical potential of the inner ear to generate mechanical power output. The power analysis provides an explanation for the correlation between stereocilia height and the tonotopic organization of hearing organs. Further, results suggest that flexoelectricity may be essential to the exquisite sensitivity and frequency selectivity of non-mammalian hearing organs at high auditory frequencies, and may contribute to the “cochlear amplifier” in mammals

    Single-cell RNA-sequencing resolves self-antigen expression during mTEC development

    Get PDF
    The crucial capability of T cells for discrimination between self and non-self peptides is based on negative selection of developing thymocytes by medullary thymic epithelial cells (mTECs). The mTECs purge autoreactive T cells by expression of cell-type specific genes referred to as tissue-restricted antigens (TRAs). Although the autoimmune regulator (AIRE) protein is known to promote the expression of a subset of TRAs, its mechanism of action is still not fully understood. The expression of TRAs that are not under the control of AIRE also needs further characterization. Furthermore, expression patterns of TRA genes have been suggested to change over the course of mTEC development. Herein we have used single-cell RNA-sequencing to resolve patterns of TRA expression during mTEC development. Our data indicated that mTEC development consists of three distinct stages, correlating with previously described jTEC, mTEChi and mTEClo phenotypes. For each subpopulation, we have identified marker genes useful in future studies. Aire-induced TRAs were switched on during jTEC-mTEC transition and were expressed in genomic clusters, while otherwise the subsets expressed largely overlapping sets of TRAs. Moreover, population-level analysis of TRA expression frequencies suggested that such differences might not be necessary to achieve efficient thymocyte selection.RM is supported by a PhD Fellowship from the Fundação para a Ciência e Tecnologia, Portugal (SFRH/ BD/51950/2012). XZ is supported by an Advanced Postdoc Mobility Fellowship from the Swiss National Science Foundation (SNSF, grant number P300P2_151352). Part of the work was performed during XZ’s visit to the Simons Institute for the Theory of Computing. TL is supported by the Academy of Finland (Decision 311081). The authors would like to thank Bee Ling Ng and the staff of the Cytometry Core Facility, and Stephan Lorenz and the staff of the Single Cell Genomics Core Facility for their contribution. Mark Lynch is acknowledged for technical assistance with the Fluidigm C1 platform. Mike Stubbington and Kylie James are acknowledged for revising the language of the manuscript. We thank Sarah Teichmann for help and discussions regarding the manuscript.info:eu-repo/semantics/publishedVersio
    corecore