633 research outputs found

    Geography of conservation spending, biodiversity, and culture

    Get PDF
    We used linear and multivariate models to examine the associations between geography, biodiversity, per capita economic output, national spending on conservation, governance, and cultural traits in 55 countries. Cultural traits and social metrics of modernization correlated positively with national spending on conservation. The global distribution of this spending culture was poorly aligned with the distribution of biodiversity. Specifically, biodiversity was greater in the tropics where cultures tended to spend relatively less on conservation and tended to have higher collectivism, formalized and hierarchical leadership, and weaker governance. Consequently, nations lacking social traits frequently associated with modernization, environmentalism, and conservation spending have the largest component of Earth's biodiversity. This has significant implications for setting policies and priorities for resource management given that biological diversity is rapidly disappearing and cultural traits change slowly. Therefore, we suggest natural resource management adapt to and use characteristics of existing social organization rather than wait for or promote social values associated with conservation spending. Supporting biocultural traditions, engaging leaders to increase conservation commitments, cross-national efforts that complement attributes of cultures, and avoiding interference with nature may work best to conserve nature in collective and hierarchical societies. Spending in modernized nations may be a symbolic response to a symptom of economic development and environmental degradation, and here conservation actions need to ensure that biodiversity is not being lost

    The importance of habitat quality for marine reserve fishery linkages

    Get PDF
    We model marine reserve - fishery linkages to evaluate the potential contribution of habitat-quality improvements inside a marine reserve to fish productivity and fishery catches. Data from Mombasa Marine National Park, Kenya, and the adjacent fishery are used. Marine reserves increase total fish biomass directly by providing refuge from exploitation and indirectly by improving fish habitat in the reserve. As natural mortality of the fish stock decreases in response to habitat enhancement in the reserve, catches increase by up to 2.6 tonnes (t).km(-2).year(-1) and total fish biomass by up to 36 t.km(-2). However, if habitat-quality improvement reduces the propensity of fish to move out of the reserve, catches may fall by up to 0.9 t.km(-2).year(-1). Our results indicate that habitat protection in reserves can underpin fish productivity and, depending on its effects on fish movements, augment catches

    Marine reserve recovery rates towards a baseline are slower for reef fish community life histories than biomass

    Get PDF
    Ecological baselines are disappearing and it is uncertain how marine reserves, here called fisheries closures, simulate pristine communities. We tested the influence of fisheries closure age, size and compliance on recovery of community biomass and life-history metrics towards a baseline. We used census data from 324 coral reefs, including 41 protected areas ranging between 1 and 45 years of age and 0.28 and 1430 km(2), and 36 sites in a remote baseline, the Chagos Archipelago. Fish community-level life histories changed towards larger and later maturing fauna with increasing closure age, size and compliance. In high compliance closures, community biomass levelled at approximately 20 years and 10 km(2) but was still only at approximately 30% of the baseline and community growth rates were projected to slowly decline for more than 100 years. In low compliance and young closures, biomass levelled at half the value and time as high compliance closures and life-history metrics were not predicted to reach the baseline. Biomass does not adequately reflect the long-time scales for full recovery of life-history characteristics, with implications for coral reef management

    Nutrient capture and sustainable yield maximized by a gear modification in artisanal fishing traps

    Get PDF
    Coral reef artisanal fisheries are an important source of nutrition and economic wellbeing for coastal communities, but their management is subject to conflicts and tradeoffs between short-term food security benefits and long-term ecological function. One potential tradeoff is between nutrient capture and fish yields, where targeting small, nutrient-dense species may be more valuable for food security than maximizing fish yields, which is more closely aligned with supporting biodiversity and ecological function. We explored these potential tradeoffs by comparing two similar gears: traditional African basket traps and traps modified with an escape gap. Traps without escape gaps captured a higher frequency of fish with body sizes below their estimated lengths at maximum sustainable yield than gated traps. Estimates of nutrient yields for six micronutrients among the 208 captured species indicated high hump-shaped relationships for gated traps and low and linear positive relationships for traditional traps. Maximum nutrients in gated traps frequently corresponded to body sizes at maximum sustainable yield. Daily capture rates of nutrients were above daily needs more often in gated than traditional traps, but calcium values were low in both trap designs. Gated traps were more likely to capture species with unique and potentially important functional traits, including browsing herbivores, which could have negative effects on ecological functions and reef recovery. However, gated traps also catch fewer immature fish and fewer predators. Our results indicate that nutrient yields can be maximized while using a gear that captures larger and more sustainable body sizes in coral reef artisanal fisheries. Preferential targeting of nutrient-dense fishes is only one of many metrics for evaluating a nutrition-centered management strategy and may only be a management target in specific contexts

    The Probing In-Situ With Neutron and Gamma Rays (PING) Instrument for Planetary Composition Measurements

    Get PDF
    The Probing In situ with Neutrons and Gamma rays (PING) instrument (formerly named PNG-GRAND) [I] experiment is an innovative application of the active neutron-gamma ray technology successfully used in oil field well logging and mineral exploration on Earth over many decades. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring PING to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets and measure their bulk surface and subsurface elemental composition without the need to drill into the surface. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions. While orbital measurements can map a planet, they have low spatial and elemental sensitivity due to the low surface gamma ray emission rates reSUlting from using cosmic rays as an excitation source, PING overcomes this limitation in situ by incorporating a powerful neutron excitation source that permits significantly higher elemental sensitivity elemental composition measurements. PING combines a 14 MeV deuterium-tritium Pulsed Neutron Generator (PNG) with a gamma ray spectrometer and two neutron detectors to produce a landed instrument that can determine the elemental composition of a planet down to 30 - 50 cm below the planet's surface, The penetrating nature of .5 - 10 MeV gamma rays and 14 MeV neutrons allows such sub-surface composition measurements to be made without the need to drill into or otherwise disturb the planetary surface, thus greatly simplifying the lander design, We are cun'ently testing a PING prototype at a unique outdoor neutron instrumentation test facility at NASA/GSFC that provides two large (1.8 m x 1.8 m x ,9 m) granite and basalt test formations placed outdoors in an empty field, Since an independent trace elemental analysis has been performed on both these Columbia River basalt and Concord Gray granite materials, these large samples present two known standards with which to compare PING's experimentally measured elemental composition results, We will present both gamma ray and neutron experimental results from PING measurements of the granite and basalt test formations in various layering configurations and compare the results to the known composition

    Comparison of Image Restoration Methods for Lunar Epithermal Neutron Emission Mapping

    Get PDF
    Orbital measurements of neutrons by the Lunar Exploring Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter are being used to quantify the spatial distribution of near surface hydrogen (H). Inferred H concentration maps have low signal-to-noise (SN) and image restoration (IR) techniques are being studied to enhance results. A single-blind. two-phase study is described in which four teams of researchers independently developed image restoration techniques optimized for LEND data. Synthetic lunar epithermal neutron emission maps were derived from LEND simulations. These data were used as ground truth to determine the relative quantitative performance of the IR methods vs. a default denoising (smoothing) technique. We review and used factors influencing orbital remote sensing of neutrons emitted from the lunar surface to develop a database of synthetic "true" maps for performance evaluation. A prior independent training phase was implemented for each technique to assure methods were optimized before the blind trial. Method performance was determined using several regional root-mean-square error metrics specific to epithermal signals of interest. Results indicate unbiased IR methods realize only small signal gains in most of the tested metrics. This suggests other physically based modeling assumptions are required to produce appreciable signal gains in similar low SN IR applications

    Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems

    Get PDF
    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change

    Active Neutron and Gamma Ray Instrumentation for In Situ Planetary Science Applications

    Get PDF
    The Pulsed Neutron Generator-Gamma Ray And Neutron Detectors (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA-GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Menus, asteroids, comets and the satellites of the outer planets. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions and, especially its the case of the Mars Odyssey GRS, have contributed detailed maps of the elemental composition over the entire surface of Mars. However, orbital gamma ray measurements have low spatial sensitivity (100's of km) due to their low surface emission rates from cosmic rays and subsequent need to be averaged over large surface areas. PNG-GRAND overcomes this impediment by incorporating a powerful neutron excitation source that permits high sensitivity surface and subsurface measurements of bulk elemental compositions. PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument to determine subsurface elemental composition without needing to drill into a planet's surface a great advantage in mission design. We are currently testing PNG-GRAND prototypes at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 in x 1 m granite structure placed outdoors in an empty field. Because an independent trace elemental analysis has been performed on the material, this granite sample is a known standard with which to compare both Monte Carlo simulations and our experimentally measured elemental composition data. We will present data from operating PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that on a planetary surface. We will also illustrate the use of gamma ray timing techniques to improve sensitivity and will compare the material composition results from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results

    Planetary Geochemistry Using Active Neutron and Gamma Ray Instrumentation

    Get PDF
    The Pulsed Neutron Generator-Gamma Ray And Neutron Detector (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth, The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asterOIds, comets and the satellites of the outer planets, Gamma-Ray Spectrometers have been incorporated into numerous orbital planetary science missions and, especially in the case of Mars Odyssey, have contributed detailed maps of the elemental composition over the entire surface of Mars, Neutron detectors have also been placed onboard orbital missions such as the Lunar Reconnaissance Orbiter and Lunar Prospector to measure the hydrogen content of the surface of the moon, The DAN in situ experiment on the Mars Science Laboratory not only includes neutron detectors, but also has its own neutron generator, However, no one has ever combined the three into one instrument PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument that can determine subsurface elemental composition without drilling. We are testing PNG-GRAND at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 m x 1 m granite structure in an empty field, We will present data from the operation of PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that which can be achieved on a planetary surface. We will also compare the material composition results inferred from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results
    • …
    corecore