403 research outputs found

    New On Line Resource for Psycholinguistic

    Get PDF
    Picture naming is a widely used technique in psycholinguistic studies. Here, we describe new on-line resources that our project has compiled and made available to researchers on the world wide web at http://crl.ucsd.edu/~aszekely/ipnp/. The website provides access to a wide range of picture stimuli and related norms in seven languages. Picture naming norms, including indices of name agreement and latency, for 520 black-and-white drawings of common objects and 275 concrete transitive and intransitive actions are presented. Norms for age-of-acquisition, word-frequency, familiarity, goodness-of-depiction, and visual complexity are included. An on-line database query system can be used to select a specific range of stimuli, based on parameters of interest for a wide range of studies on healthy and clinical populations, as well as studies of language development

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity

    A New Paradigm for Large Earthquakes in Stable Continental Plate Interiors

    Get PDF
    Large earthquakes within stable continental regions (SCR) show that significant amounts of elastic strain can be released on geological structures far from plate boundary faults, where the vast majority of the Earth's seismic activity takes place. SCR earthquakes show spatial and temporal patterns that differ from those at plate boundaries and occur in regions where tectonic loading rates are negligible. However, in the absence of a more appropriate model, they are traditionally viewed as analogous to their plate boundary counterparts, occuring when the accrual of tectonic stress localized at long-lived active faults reaches failure threshold. Here we argue that SCR earthquakes are better explained by transient perturbations of local stress or fault strength that release elastic energy from a pre-stressed lithosphere. As a result, SCR earthquakes can occur in regions with no previous seismicity and no surface evidence for strain accumulation. They need not repeat, since the tectonic loading rate is close to zero. Therefore, concepts of recurrence time or fault slip rate do not apply. As a consequence, seismic hazard in SCRs is likely more spatially distributed than indicated by paleoearthquakes, current seismicity, or geodetic strain rates

    Facilitating Adolescent Well-Being: A Review of the Challenges and Opportunities and the Beneficial Roles of Parents, Schools, Neighborhoods, and Policymakers

    Get PDF
    Adolescents face exceptional challenges and opportunities that may have a lifelong impact on their consumption and personal and societal well-being. Parents, community members (schools and neighborhoods), and policymakers play major roles in shaping adolescents and influencing their engagement in consumption behaviors that are either developmentally problematic (e.g., drug use and unhealthy eating) or developmentally constructive (e.g., academic pursuits and extracurricular activities). In this article, we discuss two main topics: (a) the challenges and opportunities that characterize adolescence, based primarily on research in epidemiology and neuroscience, and (b) the ways that parents, community members, and policymakers can facilitate positive adolescent development, based on research from many disciplines including marketing, psychology, sociology, communications, public health, and education. Our goal is to summarize the latest scientific findings that can be used by various stakeholders to help adolescents navigate this turbulent period and become well-adjusted, thriving adults

    Mechanism of Protein Kinetic Stabilization by Engineered Disulfide Crosslinks

    Get PDF
    The impact of disulfide bonds on protein stability goes beyond simple equilibrium thermodynamics effects associated with the conformational entropy of the unfolded state. Indeed, disulfide crosslinks may play a role in the prevention of dysfunctional association and strongly affect the rates of irreversible enzyme inactivation, highly relevant in biotechnological applications. While these kinetic-stability effects remain poorly understood, by analogy with proposed mechanisms for processes of protein aggregation and fibrillogenesis, we propose that they may be determined by the properties of sparsely-populated, partially-unfolded intermediates. Here we report the successful design, on the basis of high temperature molecular-dynamics simulations, of six thermodynamically and kinetically stabilized variants of phytase from Citrobacter braakii (a biotechnologically important enzyme) with one, two or three engineered disulfides. Activity measurements and 3D crystal structure determination demonstrate that the engineered crosslinks do not cause dramatic alterations in the native structure. The inactivation kinetics for all the variants displays a strongly non-Arrhenius temperature dependence, with the time-scale for the irreversible denaturation process reaching a minimum at a given temperature within the range of the denaturation transition. We show this striking feature to be a signature of a key role played by a partially unfolded, intermediate state/ensemble. Energetic and mutational analyses confirm that the intermediate is highly unfolded (akin to a proposed critical intermediate in the misfolding of the prion protein), a result that explains the observed kinetic stabilization. Our results provide a rationale for the kinetic-stability consequences of disulfide-crosslink engineering and an experimental methodology to arrive at energetic/structural descriptions of the sparsely populated and elusive intermediates that play key roles in irreversible protein denaturation.This work was supported by grants BIO2009-09562, CSD2009-00088 from the Spanish Ministry of Science and Innovation, and FEDER Funds (JMS-R)

    The individual environment, not the family is the most important influence on preferences for common non-alcoholic beverages in adolescence

    Get PDF
    Beverage preferences are an important driver of consumption, and strong liking for beverages high in energy (e.g. sugar-sweetened beverages [SSBs]) and dislike for beverages low in energy (e.g. non-nutritive sweetened beverages [NNSBs]) are potentially modifiable risk factors contributing to variation in intake. Twin studies have established that both genes and environment play important roles in shaping food preferences; but the aetiology of variation in non-alcoholic beverage preferences is unknown. 2865 adolescent twins (18–19-years old) from the Twins Early Development Study were used to quantify genetic and environmental influence on variation in liking for seven non-alcoholic beverages: SSBs; NNSBs; fruit cordials, orange juice, milk, coffee, and tea. Maximum Likelihood Structural Equation Modelling established that beverage preferences have a moderate to low genetic basis; from 18% (95% CI: 10%, 25%) for orange juice to 42% (36%, 43%) for fruit cordials. Aspects of the environment that are not shared by twin pairs explained all remaining variance in drink preferences. The sizeable unique environmental influence on beverage preferences highlights the potential for environmental modification. Policies and guidelines to change preferences for unhealthy beverages may therefore be best directed at the wider environment

    Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation

    Get PDF
    During development segmentation is a process that generates a spatial periodic pattern. Peak splitting of waves of gene expression is a mathematically predicted, simple strategy accounting for this type of process, but it has not been well characterized biologically. Here we show temporally repeated splitting of gene expression into stripes that is associated with head axis growth in the spider Achaearanea embryo. Preceding segmentation, a wave of hedgehog homologue gene expression is observed to travel posteriorly during development stage 6. This stripe, co-expressing an orthodenticle homologue, undergoes two cycles of splitting and shifting accompanied by convergent extension, serving as a generative zone for the head segments. The two orthodenticle and odd-paired homologues are identified as targets of Hedgehog signalling, and evidence suggests that their activities mediate feedback to maintain the head generative zone and to promote stripe splitting in this zone. We propose that the 'stripe-splitting' strategy employs genetic components shared with Drosophila blastoderm subdivision, which are required for participation in an autoregulatory signalling network

    Cotranslational protein assembly imposes evolutionary constraints on homomeric proteins

    Get PDF
    Cotranslational protein folding can facilitate rapid formation of functional structures. However, it might also cause premature assembly of protein complexes, if two interacting nascent chains are in close proximity. By analyzing known protein structures, we show that homomeric protein contacts are enriched towards the C-termini of polypeptide chains across diverse proteomes. We hypothesize that this is the result of evolutionary constraints for folding to occur prior to assembly. Using high-throughput imaging of protein homomers in vivo in E. coli and engineered protein constructs with N- and C-terminal oligomerization domains, we show that, indeed, proteins with C-terminal homomeric interface residues consistently assemble more efficiently than those with N-terminal interface residues. Using in vivo, in vitro and in silico experiments, we identify features that govern successful assembly of homomers, which have implications for protein design and expression optimization

    Unique establishment of procephalic head segments is supported by the identification of cis-regulatory elements driving segment-specific segment polarity gene expression in Drosophila

    Get PDF
    Anterior head segmentation is governed by different regulatory mechanisms than those that control trunk segmentation in Drosophila. For segment polarity genes, both initial mode of activation as well as cross-regulatory interactions among them differ from the typical genetic circuitry in the trunk and are unique for each of the procephalic segments. In order to better understand the segment-specific gene network responsible for the procephalic expression of the earliest active segment polarity genes wingless and hedgehog, we started to identify and analyze cis-regulatory DNA elements of these genes. For hedgehog, we could identify a cis-regulatory element, ic-CRE, that mediates expression specifically in the posterior part of the intercalary segment and requires promoter-specific interaction for its function. The intercalary stripe is the last part of the metameric hedgehog expression pattern that appears during embryonic development, which probably reflects the late and distinct establishment of this segment. The identification of a cis-regulatory element that is specific for one head segment supports the mutant-based observation that the expression of segment polarity genes is governed by a unique gene network in each of the procephalic segments. This provides further indication that the anterior-most head segments represent primary segments, which are set up independently, in contrast to the secondary segments of the trunk, which resemble true repetitive units

    Defining the Specificity of Cotranslationally Acting Chaperones by Systematic Analysis of mRNAs Associated with Ribosome-Nascent Chain Complexes

    Get PDF
    Polypeptides exiting the ribosome must fold and assemble in the crowded environment of the cell. Chaperones and other protein homeostasis factors interact with newly translated polypeptides to facilitate their folding and correct localization. Despite the extensive efforts, little is known about the specificity of the chaperones and other factors that bind nascent polypeptides. To address this question we present an approach that systematically identifies cotranslational chaperone substrates through the mRNAs associated with ribosome-nascent chain-chaperone complexes. We here focused on two Saccharomyces cerevisiae chaperones: the Signal Recognition Particle (SRP), which acts cotranslationally to target proteins to the ER, and the Nascent chain Associated Complex (NAC), whose function has been elusive. Our results provide new insights into SRP selectivity and reveal that NAC is a general cotranslational chaperone. We found surprising differential substrate specificity for the three subunits of NAC, which appear to recognize distinct features within nascent chains. Our results also revealed a partial overlap between the sets of nascent polypeptides that interact with NAC and SRP, respectively, and showed that NAC modulates SRP specificity and fidelity in vivo. These findings give us new insight into the dynamic interplay of chaperones acting on nascent chains. The strategy we used should be generally applicable to mapping the specificity, interplay, and dynamics of the cotranslational protein homeostasis network
    corecore