2,101 research outputs found

    Fringe spacing and phase of interfering matter waves

    Get PDF
    We experimentally investigate the outcoupling of atoms from Bose-Einstein condensates using two radio-frequency (rf) fields in the presence of gravity. We show that the fringe separation in the resulting interference pattern derives entirely from the energy difference between the two rf fields and not the gravitational potential difference. We subsequently demonstrate how the phase and polarisation of the rf radiation directly control the phase of the matter wave interference and provide a semi-classical interpretation of the results.Comment: 4 pages, 3 figure

    A necklace of Wulff shapes

    Full text link
    In a probabilistic model of a film over a disordered substrate, Monte-Carlo simulations show that the film hangs from peaks of the substrate. The film profile is well approximated by a necklace of Wulff shapes. Such a necklace can be obtained as the infimum of a collection of Wulff shapes resting on the substrate. When the random substrate is given by iid heights with exponential distribution, we prove estimates on the probability density of the resulting peaks, at small density

    Comparison of Strangeness Production between A+A and p+p Reactions from 2 to 160 AGeV

    Get PDF
    The measured K+/π+^+/\pi^+ ratios from heavy-ion reactions are compared with the K+/π+^+/\pi^+ ratios from p+p reactions over the energy range 2-160 AGeV. The K/π\pi enhancement in heavy-ion reactions is largest at the lower energies, consistent with strangeness production in secondary scattering becoming relatively more important than initial collisions near the kaon production threshold. The enhancement decreases steadily from 4 to 160 AGeV, suggesting that the same enhancement mechanism of hadronic rescattering and decay of strings may be applicable over this full energy range. Based on existing data, the mid-rapidity K+/π+^+/\pi^+ ratio is predicted to be 0.27±0.050.27\pm0.05 for the forthcoming Pb+Pb reactions at 40 AGeV/c.Comment: 14 pages, 4 figures, submitted to Phys. Rev.

    The K/pi ratio from condensed Polyakov loops

    Get PDF
    We perform a field-theoretical computation of hadron production in large systems at the QCD confinement phase transition associated with restoration of the Z(3) global symmetry. This occurs from the decay of a condensate for the Polyakov loop. From the effective potential for the Polyakov loop, its mass just below the confinement temperature T_c is in between the vacuum masses of the pion and that of the kaon. Therefore, due to phase-space restrictions the number of produced kaons is roughly an order of magnitude smaller than that of produced pions, in agreement with recent results from collisions of gold ions at the BNL-RHIC. From its mass, we estimate that the Polyakov loop condensate is characterized by a (spatial) correlation scale of 1/m_\ell ~ 1/2 fm. For systems of deconfined matter of about that size, the free energy may not be dominated by a condensate for the Polyakov loop, and so the process of hadronization may be qualitatively different as compared to large systems. In that vein, experimental data on hadron abundance ratios, for example K/pi, in high-multiplicity pp events at high energies should be very interesting.Comment: 7 pages, 4 figures; discussion of the two-point function of Polyakov Loops in small versus large systems adde

    GZK Photons Above 10 EeV

    Full text link
    We calculate the flux of "GZK-photons", namely the flux of photons produced by extragalactic nucleons through the resonant photoproduction of pions, the so called GZK effect. This flux depends on the UHECR spectrum on Earth, of the spectrum of nucleons emitted at the sources, which we characterize by its slope and maximum energy, on the distribution of sources and on the intervening cosmological backgrounds, in particular the magnetic field and radio backgrounds. For the first time we calculate the GZK photons produced by nuclei. We calculate the possible range of the GZK photon fraction of the total UHECR flux for the AGASA and the HiRes spectra. We find that for nucleons produced at the sources it could be as large as a few % and as low as 10^{-4} above 10 EeV. For nuclei produced at the sources the maximum photon fraction is a factor of 2 to 3 times smaller above 10 EeV but the minimum could be much smaller than for nucleons. We also comment on cosmogenic neutrino fluxes.Comment: 20 pages, 9 figures (21 panels), iopart.cls and iopart12.clo needed to typese

    The VIMOS Ultra Deep Survey: Lyα\alpha Emission and Stellar Populations of Star-Forming Galaxies at 2<z<2.5

    Get PDF
    The aim of this paper is to investigate spectral and photometric properties of 854 faint (iABi_{AB}<~25 mag) star-forming galaxies (SFGs) at 2<z<2.5 using the VIMOS Ultra-Deep Survey (VUDS) spectroscopic data and deep multi-wavelength photometric data in three extensively studied extragalactic fields (ECDFS, VVDS, COSMOS). These SFGs were targeted for spectroscopy based on their photometric redshifts. The VUDS spectra are used to measure the UV spectral slopes (β\beta) as well as Lyα\alpha equivalent widths (EW). On average, the spectroscopically measured β\beta (-1.36±\pm0.02), is comparable to the photometrically measured β\beta (-1.32±\pm0.02), and has smaller measurement uncertainties. The positive correlation of β\beta with the Spectral Energy Distribution (SED)-based measurement of dust extinction, Es_{\rm s}(B-V), emphasizes the importance of β\beta as an alternative dust indicator at high redshifts. To make a proper comparison, we divide these SFGs into three subgroups based on their rest-frame Lyα\alpha EW: SFGs with no Lyα\alpha emission (SFGN_{\rm N}; EW\le0\AA), SFGs with Lyα\alpha emission (SFGL_{\rm L}; EW>>0\AA), and Lyα\alpha emitters (LAEs; EW\ge20\AA). The fraction of LAEs at these redshifts is \sim10%, which is consistent with previous observations. We compared best-fit SED-estimated stellar parameters of the SFGN_{\rm N}, SFGL_{\rm L} and LAE samples. For the luminosities probed here (\simL^*), we find that galaxies with and without Lyα\alpha in emission have small but significant differences in their SED-based properties. We find that LAEs have less dust, and lower star-formation rates (SFR) compared to non-LAEs. We also find that LAEs are less massive compared to non-LAEs, though the difference is smaller and less significant compared to the SFR and Es_{\rm s}(B-V). [abridged]Comment: Accepted for publication in A&A, 19 pages, 10 figures, 1 tabl

    The evolution of clustering length, large-scale bias and host halo mass at 2<z<5 in the VIMOS Ultra Deep Survey (VUDS)

    Get PDF
    We investigate the evolution of galaxy clustering for galaxies in the redshift range 2.0<zz<5.0 using the VIMOS Ultra Deep Survey (VUDS). We present the projected (real-space) two-point correlation function wp(rp)w_p(r_p) measured by using 3022 galaxies with robust spectroscopic redshifts in two independent fields (COSMOS and VVDS-02h) covering in total 0.8 deg2^2. We quantify how the scale dependent clustering amplitude r0r_0 changes with redshift making use of mock samples to evaluate and correct the survey selection function. Using a power-law model ξ(r)=(r/r0)γ\xi(r) = (r/r_0)^{-\gamma} we find that the correlation function for the general population is best fit by a model with a clustering length r0r_0=3.950.54+0.48^{+0.48}_{-0.54} h1^{-1}Mpc and slope γ\gamma=1.80.06+0.02^{+0.02}_{-0.06} at zz~2.5, r0r_0=4.35±\pm0.60 h1^{-1}Mpc and γ\gamma=1.60.13+0.12^{+0.12}_{-0.13} at zz~3.5. We use these clustering parameters to derive the large-scale linear galaxy bias bLPLb_L^{PL}, between galaxies and dark matter. We find bLPLb_L^{PL} = 2.68±\pm0.22 at redshift zz~3 (assuming σ8\sigma_8 = 0.8), significantly higher than found at intermediate and low redshifts. We fit an HOD model to the data and we obtain that the average halo mass at redshift zz~3 is MhM_h=1011.75±0.23^{11.75\pm0.23} h1^{-1}M_{\odot}. From this fit we confirm that the large-scale linear galaxy bias is relatively high at bLHODb_L^{HOD} = 2.82±\pm0.27. Comparing these measurements with similar measurements at lower redshifts we infer that the star-forming population of galaxies at zz~3 should evolve into the massive and bright (MrM_r<-21.5) galaxy population which typically occupy haloes of mass Mh\langle M_h\rangle = 1013.9^{13.9} h1^{-1} MM_{\odot} at redshift zz=0.Comment: 19 pages, 10 figures, submitted to A&
    corecore