15,153 research outputs found

    Nanomechanical detection of the spin Hall effect

    Full text link
    The spin Hall effect creates a spin current in response to a charge current in a material that has strong spin-orbit coupling. The size of the spin Hall effect in many materials is disputed, requiring independent measurements of the effect. We develop a novel mechanical method to measure the size of the spin Hall effect, relying on the equivalence between spin and angular momentum. The spin current carries angular momentum, so the flow of angular momentum will result in a mechanical torque on the material. We determine the size and geometry of this torque and demonstrate that it can be measured using a nanomechanical device. Our results show that measurement of the spin Hall effect in this manner is possible and also opens possibilities for actuating nanomechanical systems with spin currents.Comment: 5 pages + 2 pages supplementary material, 4 figures tota

    Comment on "Cherenkov Radiation by Neutrinos in a Supernova Core"

    Full text link
    Mohanty and Samal have shown that the magnetic-moment interaction with nucleons contributes significantly to the photon dispersion relation in a supernova core, and with an opposite sign relative to the usual plasma effect. Because of a numerical error they overestimated the magnetic-moment term by two orders of magnitude, but it is still of the same order as the plasma effect. It appears that the Cherenkov processes gamma+nu -> nu and nu -> nu+gamma remain forbidden, but a final verdict depends on a more detailed investigation of the dynamical magnetic susceptibility of a hot nuclear medium.Comment: 2 pages, REVTEX. Submitted as a Comment to PR

    Elliptic flow of thermal dileptons as a probe of QCD matter

    Full text link
    We study the variation of elliptic flow of thermal dileptons with transverse momentum and invariant mass of the pairs for Pb+Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV. The dilepton productions from quark gluon plasma (QGP) and hot hadrons have been considered including the spectral change of light vector mesons in the thermal bath. The space time evolution has been carried out within the frame work of 2+1 dimensional ideal hydrodynamics with lattice+hadron resonance gas equation of state. We find that a judicious selection of invariant mass(M) and transverse momentum (p_T) windows can be used to extract the collective properties of quark matter, hadronic matter and also get a distinct signature of medium effects on vector mesons. Our results indicate a reduction of elliptic flow (v_2) for M beyond phi mass, which if observed experimentally would give the measure of v_2 of the partonic phase.Comment: To appear in Phys. Rev. C (Rapid Comm.

    Physical Properties of Young Brown Dwarfs and Very Low-Mass Stars Inferred from High-Resolution Model Spectra

    Get PDF
    By comparing near-infrared spectra with atmosphere models, we infer the effective temperature, surface gravity, projected rotational velocity, and radial velocity for 21 very-low-mass stars and brown dwarfs. The unique sample consists of two sequences in spectral type from M6-M9, one of 5-10 Myr objects and one of >1 Gyr field objects. A third sequence is comprised of only ~M6 objects with ages ranging from 1 Gyr. Spectra were obtained in the J band at medium (R~2,000) and high (R~20,000) resolutions with NIRSPEC on the Keck II telescope. Synthetic spectra were generated from atmospheric structures calculated with the PHOENIX model atmosphere code. Using multi-dimensional least-squares fitting and Monte Carlo routines we determine the best-fit model parameters for each observed spectrum and note which spectral regions provide consistent results. We identify successes in the reproduction of observed features by atmospheric models, including pressure-broadened KI lines, and investigate deficiencies in the models, particularly missing FeH opacity, that will need to be addressed in order to extend our analysis to cooler objects. The precision that can be obtained for each parameter using medium- and high- resolution near-infrared spectra is estimated and the implications for future studies of very low mass stars and brown dwarfs are discussed.Comment: Accepted to the Astrophysical Journal Supplement Serie

    Acceptance Dependence of Fluctuation in Particle Multiplicity

    Full text link
    The effect of limiting the acceptance in rapidity on event-by-event multiplicity fluctuations in nucleus-nucleus collisions has been investigated. Our analysis shows that the multiplicity fluctuations decrease when the rapidity acceptance is decreased. We explain this trend by assuming that the probability distribution of the particles in the smaller acceptance window follows binomial distribution. Following a simple statistical analysis we conclude that the event-by-event multiplicity fluctuations for full acceptance are likely to be larger than those observed in the experiments, since the experiments usually have detectors with limited acceptance. We discuss the application of our model to simulated data generated using VENUS, a widely used event generator in heavy-ion collisions. We also discuss the results from our calculations in presence of dynamical fluctuations and possible observation of these in the actual data.Comment: To appear in Int. J. Mod. Phys.

    Field Effect Transistor Nanosensor for Breast Cancer Diagnostics

    Full text link
    Silicon nanochannel field effect transistor (FET) biosensors are one of the most promising technologies in the development of highly sensitive and label-free analyte detection for cancer diagnostics. With their exceptional electrical properties and small dimensions, silicon nanochannels are ideally suited for extraordinarily high sensitivity. In fact, the high surface-to-volume ratios of these systems make single molecule detection possible. Further, FET biosensors offer the benefits of high speed, low cost, and high yield manufacturing, without sacrificing the sensitivity typical for traditional optical methods in diagnostics. Top down manufacturing methods leverage advantages in Complementary Metal Oxide Semiconductor (CMOS) technologies, making richly multiplexed sensor arrays a reality. Here, we discuss the fabrication and use of silicon nanochannel FET devices as biosensors for breast cancer diagnosis and monitoring
    • …
    corecore