126 research outputs found

    Not just fractal surfaces, but surface fractal aggregates: Derivation of the expression for the structure factor and its applications

    Get PDF
    Densely packed surface fractal aggregates form in systems with high local volume fractions of particles with very short diffusion lengths, which effectively means that particles have little space to move. However, there are no prior mathematical models, which would describe scattering from such surface fractal aggregates and which would allow the subdivision between inter- and intraparticle interferences of such aggregates. Here, we show that by including a form factor function of the primary particles building the aggregate, a finite size of the surface fractal interfacial sub-surfaces can be derived from a structure factor term. This formalism allows us to define both a finite specific surface area for fractal aggregates and the fraction of particle interfacial sub-surfaces at the perimeter of an aggregate. The derived surface fractal model is validated by comparing it with an ab initio approach that involves the generation of a "brick-in-a-wall" von Koch type contour fractals. Moreover, we show that this approach explains observed scattering intensities from in situ experiments that followed gypsum (CaSO4 · 2H2O) precipitation from highly supersaturated solutions. Our model of densely packed "brick-in-a-wall" surface fractal aggregates may well be the key precursor step in the formation of several types of mosaic- and meso-crystals

    Elimination of wild-type P53 mRNA in glioblastomas showing heterozygous mutations of P53

    Get PDF
    We screened 50 glioblastomas for P53 mutations. Five glioblastomas showed heterozygous mutations, while three were putatively heterozygous. Six of these eight glioblastomas showed elimination of wild-type P53 mRNA. These results strongly suggest that some sort of mechanism(s) favouring mutated over wild-type P53 mRNA exists in glioblastoma cells with heterozygous mutations of this gene

    Optical Control of Metabotropic Glutamate Receptors

    Get PDF
    G-protein coupled receptors (GPCRs), the largest family of membrane signaling proteins, respond to neurotransmitters, hormones and small environmental molecules. The neuronal function of many GPCRs has been difficult to resolve because of an inability to gate them with subtype-specificity, spatial precision, speed and reversibility. To address this, we developed an approach for opto-chemical engineering native GPCRs. We applied this to the metabotropic glutamate receptors (mGluRs) to generate light-agonized and light-antagonized “LimGluRs”. The light-agonized “LimGluR2”, on which we focused, is fast, bistable, and supports multiple rounds of on/off switching. Light gates two of the primary neuronal functions of mGluR2: suppression of excitability and inhibition of neurotransmitter release. The light-antagonized “LimGluR2block” can be used to manipulate negative feedback of synaptically released glutamate on transmitter release. We generalize the optical control to two additional family members: mGluR3 and 6. The system works in rodent brain slice and in zebrafish in vivo, where we find that mGluR2 modulates the threshold for escape behavior. These light-gated mGluRs pave the way for determining the roles of mGluRs in synaptic plasticity, memory and disease

    Glioblastoma-derived spheroid cultures as an experimental model for analysis of EGFR anomalies

    Get PDF
    Glioblastoma cell cultures in vitro are frequently used for investigations on the biology of tumors or new therapeutic approaches. Recent reports have emphasized the importance of cell culture type for maintenance of tumor original features. Nevertheless, the ability of GBM cells to preserve EGFR overdosage in vitro remains controversial. Our experimental approach was based on quantitative analysis of EGFR gene dosage in vitro both at DNA and mRNA level. Real-time PCR data were verified with a FISH method allowing for a distinction between EGFR amplification and polysomy 7. We demonstrated that EGFR amplification accompanied by EGFRwt overexpression was maintained in spheroids, but these phenomena were gradually lost in adherent culture. We noticed a rapid decrease of EGFR overdosage already at the initial stage of cell culture establishment. In contrast to EGFR amplification, the maintenance of polysomy 7 resulted in EGFR locus gain and stabilization even in long-term adherent culture in serum presence. Surprisingly, the EGFRwt expression pattern did not reflect the latter phenomenon and we observed no overexpression of the tested gene. Moreover, quantitative analysis demonstrated that expression of the truncated variant of receptor—EGFRvIII was preserved in GBM-derived spheroids at a level comparable to the initial tumor tissue. Our findings are especially important in the light of research using glioblastoma culture as the experimental model for testing novel EGFR-targeted therapeutics in vitro, with special emphasis on the most common mutated form of receptor—EGFRvIII

    Modelling mammalian energetics: the heterothermy problem

    Get PDF
    Global climate change is expected to have strong effects on the world’s flora and fauna. As a result, there has been a recent increase in the number of meta-analyses and mechanistic models that attempt to predict potential responses of mammals to changing climates. Many models that seek to explain the effects of environmental temperatures on mammalian energetics and survival assume a constant body temperature. However, despite generally being regarded as strict homeotherms, mammals demonstrate a large degree of daily variability in body temperature, as well as the ability to reduce metabolic costs either by entering torpor, or by increasing body temperatures at high ambient temperatures. Often, changes in body temperature variability are unpredictable, and happen in response to immediate changes in resource abundance or temperature. In this review we provide an overview of variability and unpredictability found in body temperatures of extant mammals, identify potential blind spots in the current literature, and discuss options for incorporating variability into predictive mechanistic models

    Time spent on work-related activities, social activities and time pressure as intermediary determinants of health disparities among elderly women and men in 5 European countries: a structural equation model

    Get PDF
    Background Psychosocial factors shape the health of older adults through complex inter-relating pathways. Besides socioeconomic factors, time use activities may explain gender inequality in self-reported health. This study investigated the role of work-related and social time use activities as determinants of health in old age. Specifically, we analysed whether the impact of stress in terms of time pressure on health mediated the relationship between work-related time use activities (i.e. housework and paid work) on self-reported health. Methods We applied structural equation models and a maximum-likelihood function to estimate the direct and indirect effects of psychosocial factors on health using pooled data from the Multinational Time Use Study on 11,168 men and 14,295 women aged 65+ from Italy, Spain, UK, France and the Netherlands. Results The fit indices for the conceptual model indicated an acceptable fit for both men and women. The results showed that socioeconomic status (SES), demographic factors, stress and work-related time use activities after retirement had a significant direct influence on self-reported health among the elderly, but the magnitude of the effects varied by gender. Social activities had a positive impact on self-reported health but had no significant impact on stress among older men and women. The indirect standardized effects of work-related activities on self-reported health was statistically significant for housework (β = − 0.006; P  0.05 among women), which implied that the paths from paid work and housework on self-reported health via stress (mediator) was very weak because their indirect effects were close to zero. Conclusions Our findings suggest that although stress in terms of time pressure has a direct negative effect on health, it does not indirectly influence the positive effects of work-related time use activities on self-reported health among elderly men and women. The results support the time availability hypothesis that the elderly may not have the same time pressure as younger adults after retirement
    corecore