14,875 research outputs found

    How to support growth with less energy

    Get PDF
    There is considerable potential to support growth with less use of primary energy and lower carbon emissions. This can be achieved through technical solutions (existing and new), as well as behavioural change. The goal of securing growth with lower carbon emissions is just one of several strategic goals that need to be satisfied. Of the others, the need to develop alternatives to an energy system heavily dependent on oil and natural gas and to maintain security of energy supply are likely to be the most important. The strategic goals are to achieve major reductions in the energy intensity of transport, buildings in use, and to achieve corresponding reductions in energy intensity of the major building materials. Key challenges associated with these strategic goals include: • the development of technologies to produce carbon-free cement, carbon-free steel, carbon-free glass • enabling infrastructural developments that provide a framework for a wide range of low-carbon technologies and increase energy diversity and security of supply • identification of key energy-efficiency tipping points and the construction of technology policy • development of methane-fired modular fuel cells • improved capabilities to model whole energy systems, i.e. adequately modelling both demand and supply, social/economic as well as technical, and assessing the impact outside of the UK system boundary • better low-carbon planning and improved co-ordination of planning, building control and other policy tools • better monitoring and feedback on the real performance of energy efficient technologies. The implication of the Energy White Paper goal of reducing CO2 emissions by 60% by 2050 is a six-fold reduction in the carbon intensity of the UK economy. In the longer run, it is clear that we will move towards a carbon-free economy. Within this transition, developments in supply, distribution and end-use technologies will be multiplicative, while action to constrain demand growth is crucial to the rate of the overall transition

    Ages of the Pliocene-Pleistocene Alexandra and Ngatutura Volcanics, western North Island, New Zealand, and some geological implications

    Get PDF
    The Alexandra and Ngatutura Volcanics are the two southernmost of the Pliocene-Quaternary volcanic fields of western and northern North Island, New Zealand, northwest of Taupo Volcanic Zone TVZ. The Ngatutura Basalts are an alkalic basaltic field comprising monogenetic volcanoes. The Alexandra Volcanics consist of three basaltic magma series: an alkalic (Okete Volcanics), calcalkalic (Karioi, Pirongia, Kakepuku, and Te Kawa Volcanics), and a minor potassic series. Twenty new K-Arages are presented for the Alexandra Volcanics and 9 new ages for the Ngatutura Basalts. Ages of the Alexandra Volcanics range from 2.74 to 1 .60 Ma, and the ages of all three magma series overlap. Ages of the Ngatutura Basalts range from 1 .83 to 1.54 Ma. Each basaltic field has a restricted time range and there is a progressive younging in age of the basaltic fields of western North Island from the Alexandra Volcanics in the south, to Ngatutura, to South Auckland, and then to the Auckland field in the north. Neither of the Alexandra nor Ngatutura Volcanics shows any younging direction of their volcanic centres or any age pattern within their fields, and there is no systematic variation in age with rock composition. Any correlation of age with degree of erosion of volcanic cones is invalid for these basaltic fields; instead, the degree of erosion may be controlled by the lithology of the cones and possibly by the extent of preservation offered by the thick cover deposits of the Kauroa, Hamilton, and younger tephra beds. Stratigraphic relations have enabled the earliest member of the Kauroa Ash Formation to be dated at 2.3 Ma. This formation represents a series of widespread rhyolitic plinian and ignimbrite eruptions probably derived from TVZ and initiated during the Late Pliocene

    Exploring Deep Space: Learning Personalized Ranking in a Semantic Space

    Full text link
    Recommender systems leverage both content and user interactions to generate recommendations that fit users' preferences. The recent surge of interest in deep learning presents new opportunities for exploiting these two sources of information. To recommend items we propose to first learn a user-independent high-dimensional semantic space in which items are positioned according to their substitutability, and then learn a user-specific transformation function to transform this space into a ranking according to the user's past preferences. An advantage of the proposed architecture is that it can be used to effectively recommend items using either content that describes the items or user-item ratings. We show that this approach significantly outperforms state-of-the-art recommender systems on the MovieLens 1M dataset.Comment: 6 pages, RecSys 2016 RSDL worksho

    Evaluating the impact of an enhanced energy performance standard on load-bearing masonry domestic construction: Understanding the gap between designed and real performance: lessons from Stamford Brook.

    Get PDF
    This report is aimed at those with interests in the procurement, design and construction of new dwellings both now and in the coming years as the Government’s increasingly stringent targets for low and zero carbon housing approach. It conveys the results of a research project, carried out between 2001 and 2008, that was designed to evaluate the extent to which low carbon housing standards can be achieved in the context of a large commercial housing development. The research was led by Leeds Metropolitan University in collaboration with University College London and was based on the Stamford Brook development in Altrincham, Cheshire. The project partners were the National Trust, Redrow and Taylor Wimpey and some 60 percent of the planned 700 dwelling development has been completed up to June 2008. As the UK house building industry and its suppliers grapple with the challenges of achieving zero carbon housing by 2016, the lessons arising from this project are timely and of considerable value. Stamford Brook has demonstrated that designing masonry dwellings to achieve an enhanced energy standard is feasible and that a number of innovative approaches, particularly in the area of airtightness, can be successful. The dwellings, as built, exceed the Building Regulations requirements in force at the time but tests on the completed dwellings and longer term monitoring of performance has shown that, overall, energy consumption and carbon emissions, under standard occupancy, are around 20 to 25 percent higher than design predictions. In the case of heat loss, the discrepancy can be much higher. The report contains much evidence of considerable potential but points out that realising the design potential requires a fundamental reappraisal of processes within the industry from design and construction to the relationship with its supply chain and the development of the workforce. The researchers conclude that, even when builders try hard, current mainstream technical and organisational practices together with industry cultures present barriers to consistent delivery of low and zero carbon performance. They suggest that the underlying reasons for this are deeply embedded at all levels of the house building industry. They point out also that without fundamental change in processes and cultures, technological innovations, whether they be based on traditional construction or modern methods are unlikely to reach their full potential. The report sets out a series of wide ranging implications for new housing in the UK, which are given in Chapter 14 and concludes by firmly declaring that cooperation between government, developers, supply chains, educators and researchers will be crucial to improvement. The recommendations in this report are already being put into practice by the researchers at Leeds Metropolitan University and University College London in their teaching and in further research projects. The implications of the work have been discussed across the industry at a series of workshops undertaken in 2008 as part of the LowCarb4Real project (see http://www.leedsmet.ac.uk/as/cebe/projects/lowcarb4real/index.htm). In addition, the learning is having an impact on the work of the developers (Redrow and Taylor Wimpey) who, with remarkable foresight and enthusiasm, hosted the project. This report seeks to make the findings more widely available and is offered for consideration by everyone who has a part to play in making low and zero carbon housing a reality

    Changes in Gene Expression During Acclimation to Cold Temperatures in White Clover (\u3cem\u3eTrifolium Repens\u3c/em\u3e L.)

    Get PDF
    White clover is an important component of many temperate pastures and improved winter hardiness is a major objective of breeding programmes in many countries. Exposure to cold and fluctuations in temperature are components of winter stress and although some studies have investigated the agronomic and physiological mechanisms of cold tolerance, little research has been carried out to identify the genes involved. We are complementing mapping of quantitative trait loci (QTL) responsible for cold tolerance with studies of variation in gene expression between plants growing at different temperatures. In particular we are initially focusing on the process of acclimation by analysing plants subjected to low but above zero temperatures

    The prevalence of and knowledge about tobacco use among physicians in the Odessa region, Ukraine

    Get PDF
    We investigated prevalence of and knowledge about tobacco use among physicians, and their counselling of patients in the Odessa region (Ukraine). Paediatricians (40), family doctors (40) and interns (70) were selected from the physician population of the Odessa region. The proportion of smokers was unacceptably high for health care professionals: paediatricians, 32.5%; family doctors, 37.5%; and interns, 50%. Majority of smokers were men. Less than half of smokers had considered quitting or seriously attempted to quit. Interns least frequently asked their patients about smoking (52.5 vs. 80% paediatricians and 72.5% family doctors). Ukrainian universities need to better educate medical students on tobacco control measures

    Modelling the Galactic Magnetic Field on the Plane in 2D

    Full text link
    We present a method for parametric modelling of the physical components of the Galaxy's magnetised interstellar medium, simulating the observables, and mapping out the likelihood space using a Markov Chain Monte-Carlo analysis. We then demonstrate it using total and polarised synchrotron emission data as well as rotation measures of extragalactic sources. With these three datasets, we define and study three components of the magnetic field: the large-scale coherent field, the small-scale isotropic random field, and the ordered field. In this first paper, we use only data along the Galactic plane and test a simple 2D logarithmic spiral model for the magnetic field that includes a compression and a shearing of the random component giving rise to an ordered component. We demonstrate with simulations that the method can indeed constrain multiple parameters yielding measures of, for example, the ratios of the magnetic field components. Though subject to uncertainties in thermal and cosmic ray electron densities and depending on our particular model parametrisation, our preliminary analysis shows that the coherent component is a small fraction of the total magnetic field and that an ordered component comparable in strength to the isotropic random component is required to explain the polarisation fraction of synchrotron emission. We outline further work to extend this type of analysis to study the magnetic spiral arm structure, the details of the turbulence as well as the 3D structure of the magnetic field.Comment: 18 pages, 11 figures, updated to published MNRAS versio

    A study of blood contamination of Siqveland matrix bands

    Get PDF
    AIMS To use a sensitive forensic test to measure blood contamination of used Siqveland matrix bands following routine cleaning and sterilisation procedures in general dental practice. MATERIALS AND METHODS: Sixteen general dental practices in the West of Scotland participated. Details of instrument cleaning procedures were recorded for each practice. A total of 133 Siqveland matrix bands were recovered following cleaning and sterilisation and were examined for residual blood contamination by the Kastle-Meyer test, a well-recognised forensic technique. RESULTS: Ultrasonic baths were used for the cleaning of 62 (47%) bands and retainers and the remainder (53%) were hand scrubbed prior to autoclaving. Overall, 21% of the matrix bands and 19% of the retainers gave a positive Kastle-Meyer test, indicative of residual blood contamination, following cleaning and sterilisation. In relation to cleaning method, 34% of hand-scrubbed bands and 32% of hand-scrubbed retainers were positive for residual blood by the Kastle-Meyer test compared with 6% and 3% respectively of ultrasonically cleaned bands and retainers (P less than 0.001). CONCLUSIONS: If Siqveland matrix bands are re-processed in the assembled state, then adequate pre-sterilisation cleaning cannot be achieved reliably. Ultrasonic baths are significantly more effective than hand cleaning for these items of equipment

    Scene Coordinate Regression with Angle-Based Reprojection Loss for Camera Relocalization

    Get PDF
    Image-based camera relocalization is an important problem in computer vision and robotics. Recent works utilize convolutional neural networks (CNNs) to regress for pixels in a query image their corresponding 3D world coordinates in the scene. The final pose is then solved via a RANSAC-based optimization scheme using the predicted coordinates. Usually, the CNN is trained with ground truth scene coordinates, but it has also been shown that the network can discover 3D scene geometry automatically by minimizing single-view reprojection loss. However, due to the deficiencies of the reprojection loss, the network needs to be carefully initialized. In this paper, we present a new angle-based reprojection loss, which resolves the issues of the original reprojection loss. With this new loss function, the network can be trained without careful initialization, and the system achieves more accurate results. The new loss also enables us to utilize available multi-view constraints, which further improve performance.Comment: ECCV 2018 Workshop (Geometry Meets Deep Learning
    corecore