430 research outputs found

    Peripheral primitive neuroectodermal tumour - A rare cause of a popliteal fossa mass: A case report and review of the literature

    Get PDF
    A literature review of peripheral primitive neuroectodermal tumours, illustrated with an index case report describing an 80-year-old woman who presented with a mass in the left popliteal fossa, is reported. An excision biopsy was performed, revealing a possible peripheral primitive neuroectodermal tumour as the primary pathology. Normally confined to the chest wall and axial soft tissues of children and young adults, reports of this tumour existing in other areas and in the elderly population are scarce

    Analysis of Locally Coupled 3D Manipulation Mappings Based on Mobile Device Motion

    Get PDF
    We examine a class of techniques for 3D object manipulation on mobile devices, in which the device's physical motion is applied to 3D objects displayed on the device itself. This "local coupling" between input and display creates specific challenges compared to manipulation techniques designed for monitor-based or immersive virtual environments. Our work focuses specifically on the mapping between device motion and object motion. We review existing manipulation techniques and introduce a formal description of the main mappings under a common notation. Based on this notation, we analyze these mappings and their properties in order to answer crucial usability questions. We first investigate how the 3D objects should move on the screen, since the screen also moves with the mobile device during manipulation. We then investigate the effects of a limited range of manipulation and present a number of solutions to overcome this constraint. This work provides a theoretical framework to better understand the properties of locally-coupled 3D manipulation mappings based on mobile device motion

    Understanding Multi-Device Usage Patterns: Physical Device Configurations and Fragmented Workflows

    Get PDF
    To better ground technical (systems) investigation and interaction design of cross-device experiences, we contribute an in-depth survey of existing multi-device practices, including fragmented workflows across devices and the way people physically organize and configure their workspaces to support such activity. Further, this survey documents a historically significant moment of transition to a new future of remote work, an existing trend dramatically accelerated by the abrupt switch to work-from-home (and having to contend with the demands of home-at-work) during the COVID-19 pandemic. We surveyed 97 participants, and collected photographs of home setups and open-ended answers to 50 questions categorized in 5 themes. We characterize the wide range of multi-device physical configurations and identify five usage patterns, including: partitioning tasks, integrating multi-device usage, cloning tasks to other devices, expanding tasks and inputs to multiple devices, and migrating between devices. Our analysis also sheds light on the benefits and challenges people face when their workflow is fragmented across multiple devices. These insights have implications for the design of multi-device experiences that support people's fragmented workflows

    AirConstellations: In-Air Device Formations for Cross-Device Interaction via Multiple Spatially-Aware Armatures

    Get PDF
    AirConstellations supports a unique semi-fixed style of cross-device interactions via multiple self-spatially-aware armatures to which users can easily attach (or detach) tablets and other devices. In particular, AirConstellations affords highly flexible and dynamic device formations where the users can bring multiple devices together in-air - with 2-5 armatures poseable in 7DoF within the same workspace - to suit the demands of their current task, social situation, app scenario, or mobility needs. This affords an interaction metaphor where relative orientation, proximity, attaching (or detaching) devices, and continuous movement into and out of ad-hoc ensembles can drive context-sensitive interactions. Yet all devices remain self-stable in useful configurations even when released in mid-air. We explore flexible physical arrangement, feedforward of transition options, and layering of devices in-air across a variety of multi-device app scenarios. These include video conferencing with flexible arrangement of the person-space of multiple remote participants around a shared task-space, layered and tiled device formations with overview+detail and shared-to-personal transitions, and flexible composition of UI panels and tool palettes across devices for productivity applications. A preliminary interview study highlights user reactions to AirConstellations, such as for minimally disruptive device formations, easier physical transitions, and balancing "seeing and being seen"in remote work

    NEON terrestrial field observations: designing continental-scale, standardized sampling.

    Get PDF
    Rapid changes in climate and land use and the resulting shifts in species distributions and ecosystem functions have motivated the development of the National Ecological Observatory Network (NEON). Integrating across spatial scales from ground sampling to remote sensing, NEON will provide data for users to address ecological responses to changes in climate, land use, and species invasion across the United States for at least 30 years. Although NEON remote sensing and tower sensor elements are relatively well known, the biological measurements are not. This manuscript describes NEON terrestrial sampling, which targets organisms across a range of generation and turnover times, and a hierarchy of measurable biological states. Measurements encompass species diversity, abundance, phenology, demography, infectious disease, ecohydrology, and biogeochemistry. The continental-scale sampling requires collection of comparable and calibrated data using transparent methods. Data will be publicly available in a variety of formats and suitable for integration with other long-term efforts. NEON will provide users with the data necessary to address large-scale questions, challenge current ecological paradigms, and forecast ecological change

    Synergies Among Environmental Science Research and Monitoring Networks: A Research Agenda

    Get PDF
    Many research and monitoring networks in recent decades have provided publicly available data documenting environmental and ecological change, but little is known about the status of efforts to synthesize this information across networks. We convened a working group to assess ongoing and potential cross-network synthesis research and outline opportunities and challenges for the future, focusing on the US-based research network (the US Long-Term Ecological Research network, LTER) and monitoring network (the National Ecological Observatory Network, NEON). LTER-NEON cross-network research synergies arise from the potentials for LTER measurements, experiments, models, and observational studies to provide context and mechanisms for interpreting NEON data, and for NEON measurements to provide standardization and broad scale coverage that complement LTER studies. Initial cross-network syntheses at co-located sites in the LTER and NEON networks are addressing six broad topics: how long-term vegetation change influences C fluxes; how detailed remotely sensed data reveal vegetation structure and function; aquatic-terrestrial connections of nutrient cycling; ecosystem response to soil biogeochemistry and microbial processes; population and species responses to environmental change; and disturbance, stability and resilience. This initial study offers exciting potentials for expanded cross-network syntheses involving multiple long-term ecosystem processes at regional or continental scales. These potential syntheses could provide a pathway for the broader scientific community, beyond LTER and NEON, to engage in cross-network science. These examples also apply to many other research and monitoring networks in the US and globally, and can guide scientists and research administrators in promoting broad-scale research that supports resource management and environmental policy
    corecore