322 research outputs found

    Control theory for principled heap sizing

    Get PDF
    We propose a new, principled approach to adaptive heap sizing based on control theory. We review current state-of-the-art heap sizing mechanisms, as deployed in Jikes RVM and HotSpot. We then formulate heap sizing as a control problem, apply and tune a standard controller algorithm, and evaluate its performance on a set of well-known benchmarks. We find our controller adapts the heap size more responsively than existing mechanisms. This responsiveness allows tighter virtual machine memory footprints while preserving target application throughput, which is ideal for both embedded and utility computing domains. In short, we argue that formal, systematic approaches to memory management should be replacing ad-hoc heuristics as the discipline matures. Control-theoretic heap sizing is one such systematic approach

    Universal mean moment rate profiles of earthquake ruptures

    Full text link
    Earthquake phenomenology exhibits a number of power law distributions including the Gutenberg-Richter frequency-size statistics and the Omori law for aftershock decay rates. In search for a basic model that renders correct predictions on long spatio-temporal scales, we discuss results associated with a heterogeneous fault with long range stress-transfer interactions. To better understand earthquake dynamics we focus on faults with Gutenberg-Richter like earthquake statistics and develop two universal scaling functions as a stronger test of the theory against observations than mere scaling exponents that have large error bars. Universal shape profiles contain crucial information on the underlying dynamics in a variety of systems. As in magnetic systems, we find that our analysis for earthquakes provides a good overall agreement between theory and observations, but with a potential discrepancy in one particular universal scaling function for moment-rates. The results reveal interesting connections between the physics of vastly different systems with avalanche noise.Comment: 13 pages, 5 figure

    Statistics of Earthquakes in Simple Models of Heterogeneous Faults

    Full text link
    Simple models for ruptures along a heterogeneous earthquake fault zone are studied, focussing on the interplay between the roles of disorder and dynamical effects. A class of models are found to operate naturally at a critical point whose properties yield power law scaling of earthquake statistics. Various dynamical effects can change the behavior to a distribution of small events combined with characteristic system size events. The studies employ various analytic methods as well as simulations.Comment: 4 pages, RevTex, 3 figures (eps-files), uses eps

    ppk23-Dependent Chemosensory Functions Contribute to Courtship Behavior in Drosophila melanogaster

    Get PDF
    Insects utilize diverse families of ion channels to respond to environmental cues and control mating, feeding, and the response to threats. Although degenerin/epithelial sodium channels (DEG/ENaC) represent one of the largest families of ion channels in Drosophila melanogaster, the physiological functions of these proteins are still poorly understood. We found that the DEG/ENaC channel ppk23 is expressed in a subpopulation of sexually dimorphic gustatory-like chemosensory bristles that are distinct from those expressing feeding-related gustatory receptors. Disrupting ppk23 or inhibiting activity of ppk23-expressing neurons did not alter gustatory responses. Instead, blocking ppk23-positive neurons or mutating the ppk23 gene delayed the initiation and reduced the intensity of male courtship. Furthermore, mutations in ppk23 altered the behavioral response of males to the female-specific aphrodisiac pheromone 7(Z), 11(Z)-Heptacosadiene. Together, these data indicate that ppk23 and the cells expressing it play an important role in the peripheral sensory system that determines sexual behavior in Drosophila

    Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence

    Get PDF
    The great Sumatra–Andaman earthquake and tsunami of 2004 was a dramatic reminder of the importance of understanding the seismic and tsunami hazards of subduction zones [1,2,3,4]. In March 2005, the Sunda megathrust ruptured again, producing an event [5] of moment magnitude (Mw) 8.6 south of the 2004 rupture area, which was the site of a similar event in 1861 (ref. 6). Concern was then focused on the Mentawai area, where large earthquakes had occurred in 1797 (Mw = 8.8) and 1833 (Mw = 9.0) [6,7]. Two earthquakes, one of Mw = 8.4 and, twelve hours later, one of Mw = 7.9, indeed occurred there on 12 September 2007. Here we show that these earthquakes ruptured only a fraction of the area ruptured in 1833 and consist of distinct asperities within a patch of the megathrust that had remained locked in the interseismic period. This indicates that the same portion of a megathrust can rupture in different patterns depending on whether asperities break as isolated seismic events or cooperate to produce a larger rupture. This variability probably arises from the influence of non-permanent barriers, zones with locally lower pre-stress due to the past earthquakes. The stress state of the portion of the Sunda megathrust that had ruptured in 1833 and 1797 was probably not adequate for the development of a single large rupture in 2007. The moment released in 2007 amounts to only a fraction both of that released in 1833 and of the deficit of moment that had accumulated as a result of interseismic strain since 1833. The potential for a large megathrust event in the Mentawai area thus remains large

    A Modified View on Octocorals: Heteroxenia fuscescens Nematocysts Are Diverse, Featuring Both an Ancestral and a Novel Type

    Get PDF
    Cnidarians are characterized by the presence of stinging cells containing nematocysts, a sophisticated injection system targeted mainly at prey-capture and defense. In the anthozoan subclass Octocorallia nematocytes have been considered to exist only in low numbers, to be small, and all of the ancestral atrichous-isorhiza type. This study, in contrast, revealed numerous nematocytes in the octocoral Heteroxenia fuscescens. The study demonstrates the applicability of cresyl-violet dye for differential staining and stimulating discharge of the nematocysts. In addition to the atrichous isorhiza-type of nematocysts, a novel type of macrobasic-mastigophore nematocysts was found, featuring a shaft, uniquely comprised of three loops and densely packed arrow-like spines. In contrast to the view that octocorals possess a single type of nematocyst, Heteroxenia fuscescens features two distinct types, indicating for the first time the diversification and complexity of nematocysts for Octocorallia

    Ensemble approach for generalized network dismantling

    Full text link
    Finding a set of nodes in a network, whose removal fragments the network below some target size at minimal cost is called network dismantling problem and it belongs to the NP-hard computational class. In this paper, we explore the (generalized) network dismantling problem by exploring the spectral approximation with the variant of the power-iteration method. In particular, we explore the network dismantling solution landscape by creating the ensemble of possible solutions from different initial conditions and a different number of iterations of the spectral approximation.Comment: 11 Pages, 4 Figures, 4 Table
    corecore