415 research outputs found

    The ADMA/DDAH Pathway Regulates VEGF-Mediated Angiogenesis

    Get PDF
    Objectives— Asymmetrical dimethylarginine (ADMA) is a nitric oxide synthase (NOS) inhibitor and cardiovascular risk factor associated with angiogenic disorders. Enzymes metabolising ADMA, dimethylarginine dimethylaminohydrolases (DDAH) promote angiogenesis, but the mechanisms are not clear. We hypothesized that ADMA/DDAH modifies endothelial responses to vascular endothelial growth factor (VEGF) by affecting activity of Rho GTPases, regulators of actin polymerization, and focal adhesion dynamics. Methods and Results— The effects of ADMA on VEGF-induced endothelial cell motility, focal adhesion turnover, and angiogenesis were studied in human umbilical vein endothelial cells (HUVECs) and DDAH I heterozygous knockout mice. ADMA inhibited VEGF-induced chemotaxis in vitro and angiogenesis in vitro and in vivo in an NO-dependent way. ADMA effects were prevented by overexpression of DDAH but were not associated with decreased proliferation, increased apoptosis, or changes in VEGFR-2 activity or expression. ADMA inhibited endothelial cell polarization, protrusion formation, and decreased focal adhesion dynamics, resulting from Rac1 inhibition after decrease in phosphorylation of vasodilator stimulated phosphoprotein (VASP). Constitutively active Rac1, and to a lesser extent dominant negative RhoA, abrogated ADMA effects in vitro and in vivo. Conclusion— The ADMA/DDAH pathway regulates VEGF-induced angiogenesis in an NO- and Rac1-dependent manner

    Risk of Injury in Royal Air Force Training: Does Sex Really Matter?

    Get PDF
    IntroductionMusculoskeletal injuries are common during military and other occupational physical training programs. Employers have a duty of care to reduce employees’ injury risk, where females tend to be at greater risk than males. However, quantification of principle co-factors influencing the sex–injury association, and their relative importance, remain poorly defined. Injury risk co-factors were investigated during Royal Air Force (RAF) recruit training to inform the strategic prioritization of mitigation strategies.Material and MethodsA cohort of 1,193 (males n = 990 (83%); females n = 203 (17%)) recruits, undertaking Phase-1 military training, were prospectively monitored for injury occurrence. The primary independent variable was sex, and potential confounders (fitness, smoking, anthropometric measures, education attainment) were assessed pre-training. Generalized linear models were used to assess associations between sex and injury.ResultsIn total, 31% of recruits (28% males; 49% females) presented at least one injury during training. Females had a two-fold greater unadjusted risk of injury during training than males (RR = 1.77; 95% CI 1.49–2.10). After anthropometric, lifestyle and education measures were included in the model, the excess risk decreased by 34%, but the associations continued to be statistically significant. In contrast, when aerobic fitness was adjusted, an inverse association was identified; the injury risk was 40% lower in females compared with males (RR = 0.59; 95% CI: 0.42–0.83).ConclusionsPhysical fitness was the most important confounder with respect to differences in males’ and females’ injury risk, rather than sex alone. Mitigation to reduce this risk should, therefore, focus upon physical training, complemented by healthy lifestyle interventions

    Assessment of the direct effects of DDAH I on tumour angiogenesis in vivo

    Get PDF
    Nitric oxide (NO) has been strongly implicated in glioma progression and angiogenesis. The endogenous inhibitors of NO synthesis, asymmetric dimethylarginine (ADMA) and N-monomethyl-l-arginine (l-NMMA), are metabolized by dimethylarginine dimethylaminohydrolase (DDAH), and hence, DDAH is an intracellular factor that regulates NO. However, DDAH may also have an NO-independent action. We aimed to investigate whether DDAH I has any direct role in tumour vascular development and growth independent of its NO-mediated effects, in order to establish the future potential of DDAH inhibition as an anti-angiogenic treatment strategy. A clone of rat C6 glioma cells deficient in NO production expressing a pTet Off regulatable element was identified and engineered to overexpress DDAH I in the absence of doxycycline. Xenografts derived from these cells were propagated in the presence or absence of doxycycline and susceptibility magnetic resonance imaging used to assess functional vasculature in vivo. Pathological correlates of tumour vascular density, maturation and function were also sought. In the absence of doxycycline, tumours exhibited high DDAH I expression and activity, which was suppressed in its presence. However, overexpression of DDAH I had no measurable effect on tumour growth, vessel density, function or maturation. These data suggest that in C6 gliomas DDAH has no NO-independent effects on tumour growth and angiogenesis, and that the therapeutic potential of targeting DDAH in gliomas should only be considered in the context of NO regulation

    Evidence that links loss of cyclooxygenase-2 with increased asymmetric dimethylarginine : novel explanation of cardiovascular side effects associated with anti-inflammatory drugs

    Get PDF
    © 2014 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited.BACKGROUND: Cardiovascular side effects associated with cyclooxygenase-2 inhibitor drugs dominate clinical concern. Cyclooxygenase-2 is expressed in the renal medulla where inhibition causes fluid retention and increased blood pressure. However, the mechanisms linking cyclooxygenase-2 inhibition and cardiovascular events are unknown and no biomarkers have been identified.METHODS AND RESULTS: Transcriptome analysis of wild-type and cyclooxygenase-2(-/-) mouse tissues revealed 1 gene altered in the heart and aorta, but >1000 genes altered in the renal medulla, including those regulating the endogenous nitric oxide synthase inhibitors asymmetrical dimethylarginine (ADMA) and monomethyl-l-arginine. Cyclo-oxygenase-2(-/-) mice had increased plasma levels of ADMA and monomethyl-l-arginine and reduced endothelial nitric oxide responses. These genes and methylarginines were not similarly altered in mice lacking prostacyclin receptors. Wild-type mice or human volunteers taking cyclooxygenase-2 inhibitors also showed increased plasma ADMA. Endothelial nitric oxide is cardio-protective, reducing thrombosis and atherosclerosis. Consequently, increased ADMA is associated with cardiovascular disease. Thus, our study identifies ADMA as a biomarker and mechanistic bridge between renal cyclooxygenase-2 inhibition and systemic vascular dysfunction with nonsteroidal anti-inflammatory drug usage.CONCLUSIONS: We identify the endogenous endothelial nitric oxide synthase inhibitor ADMA as a biomarker and mechanistic bridge between renal cyclooxygenase-2 inhibition and systemic vascular dysfunction.Peer reviewedFinal Published versio

    From arginine methylation to ADMA: A novel mechanism with therapeutic potential in chronic lung diseases

    Get PDF
    Protein arginine methylation is a novel posttranslational modification regulating a diversity of cellular processes, including protein-protein interaction, signal transduction, or histone function. It has recently been shown to be dysregulated in chronic renal, vascular, and pulmonary diseases, and metabolic products originating from protein arginine methylation have been suggested to serve as biomarkers in cardiovascular and pulmonary diseases

    Effects of Aberrant Pax6 Gene Dosage on Mouse Corneal Pathophysiology and Corneal Epithelial Homeostasis

    Get PDF
    Background: Altered dosage of the transcription factor PAX6 causes multiple human eye pathophysiologies. PAX6(+/-) heterozygotes suffer from aniridia and aniridia-related keratopathy (ARK), a corneal deterioration that probably involves a limbal epithelial stem cell (LESC) deficiency. Heterozygous Pax6(+/Sey-Neu) (Pax6(+/-)) mice recapitulate the human disease and are a good model of ARK. Corneal pathologies also occur in other mouse Pax6 mutants and in PAX77(Tg/-) transgenics, which over-express Pax6 and model human PAX6 duplication. Methodology/Principal Findings: We used electron microscopy to investigate ocular defects in Pax6(+/-) heterozygotes (low Pax6 levels) and PAX77(Tg/-) transgenics (high Pax6 levels). As well as the well-documented epithelial defects, aberrant Pax6 dosage had profound effects on the corneal stroma and endothelium in both genotypes, including cellular vacuolation, similar to that reported for human macular corneal dystrophy. We used mosaic expression of an X-linked LacZ transgene in X-inactivation mosaic female (XLacZ(Tg/-)) mice to investigate corneal epithelial maintenance by LESC clones in Pax6(+/-) and PAX77(Tg/-) mosaic mice. PAX77(Tg/-) mosaics, over-expressing Pax6, produced normal corneal epithelial radial striped patterns (despite other corneal defects), suggesting that centripetal cell movement was unaffected. Moderately disrupted patterns in Pax6(+/-) mosaics were corrected by introducing the PAX77 transgene (in Pax6(+/-), PAX77(Tg/-) mosaics). Pax6(Leca4/+), XLacZ(Tg/-) mosaic mice (heterozygous for the Pax6(Leca4) missense mutation) showed more severely disrupted mosaic patterns. Corrected corneal epithelial stripe numbers (an indirect estimate of active LESC clone numbers) declined with age (between 15 and 30 weeks) in wild-type XLacZ(Tg/-) mosaics. In contrast, corrected stripe numbers were already low at 15 weeks in Pax6(+/-) and PAX77(Tg/-) mosaic corneas, suggesting Pax6 under-and over-expression both affect LESC clones. Conclusions/Significance: Pax6(+/-) and PAX77(Tg/-) genotypes have only relatively minor effects on LESC clone numbers but cause more severe corneal endothelial and stromal defects. This should prompt further investigations of the pathophysiology underlying human aniridia and ARK

    Importance of Indigenous Peoples' lands for the conservation of Intact Forest Landscapes

    Get PDF
    Intact Forest Landscapes (IFLs) are critical strongholds for the environmental services that they provide, not least for their role in climate protection. On the basis of information about the distributions of IFLs and Indigenous Peoples’ lands, we examined the importance of these areas for conserving the world's remaining intact forests. We determined that at least 36% of IFLs are within Indigenous Peoples’ lands, making these areas crucial to the mitigation action needed to avoid catastrophic climate change. We also provide evidence that IFL loss rates have been considerably lower on Indigenous Peoples’ lands than on other lands, although these forests are still vulnerable to clearing and other threats. World governments must recognize Indigenous Peoples’ rights, including land tenure rights, to ensure that Indigenous Peoples play active roles in decision‐making processes that affect IFLs on their lands. Such recognition is critical given the urgent need to reduce deforestation rates in the face of escalating climate change and global biodiversity loss.Intact Forest Landscapes (IFLs) are critical strongholds for the environmental services that they provide, not least for their role in climate protection. On the basis of information about the distributions of IFLs and Indigenous Peoples' lands, we examined the importance of these areas for conserving the world's remaining intact forests. We determined that at least 36% of IFLs are within Indigenous Peoples' lands, making these areas crucial to the mitigation action needed to avoid catastrophic climate change. We also provide evidence that IFL loss rates have been considerably lower on Indigenous Peoples' lands than on other lands, although these forests are still vulnerable to clearing and other threats. World governments must recognize Indigenous Peoples' rights, including land tenure rights, to ensure that Indigenous Peoples play active roles in decision-making processes that affect IFLs on their lands. Such recognition is critical given the urgent need to reduce deforestation rates in the face of escalating climate change and global biodiversity loss.Peer reviewe

    Three Dimensional Visualization and Fractal Analysis of Mosaic Patches in Rat Chimeras: Cell Assortment in Liver, Adrenal Cortex and Cornea

    Get PDF
    The production of organ parenchyma in a rapid and reproducible manner is critical to normal development. In chimeras produced by the combination of genetically distinguishable tissues, mosaic patterns of cells derived from the combined genotypes can be visualized. These patterns comprise patches of contiguously similar genotypes and are different in different organs but similar in a given organ from individual to individual. Thus, the processes that produce the patterns are regulated and conserved. We have previously established that mosaic patches in multiple tissues are fractal, consistent with an iterative, recursive growth model with simple stereotypical division rules. Fractal dimensions of various tissues are consistent with algorithmic models in which changing a single variable (e.g. daughter cell placement after division) switches the mosaic pattern from islands to stripes of cells. Here we show that the spiral pattern previously observed in mouse cornea can also be visualized in rat chimeras. While it is generally held that the pattern is induced by stem cell division dynamics, there is an unexplained discrepancy in the speed of cellular migration and the emergence of the pattern. We demonstrate in chimeric rat corneas both island and striped patterns exist depending on the age of the animal. The patches that comprise the pattern are fractal, and the fractal dimension changes with the age of the animal and indicates the constraint in patch complexity as the spiral pattern emerges. The spiral patterns are consistent with a loxodrome. Such data are likely to be relevant to growth and cell division in organ systems and will help in understanding how organ parenchyma are generated and maintained from multipotent stem cell populations located in specific topographical locations within the organ. Ultimately, understanding algorithmic growth is likely to be essential in achieving organ regeneration in vivo or in vitro from stem cell populations

    An exploratory analysis of planning characteristics in Australian visitor attractions

    Get PDF
    This paper provides an exploratory analysis of the planning practices of 408 Australian attraction operators. The results indicate that attraction managers can be divided into four categories: those that do not engage in any formal planning, those that adopt a short-term planning approach, those that develop long-term plans, and those that use both short-term and long-term planning approaches. An evaluation of the sophistication of attraction planning showed a bipolar distribution. Attraction managers favored a planning horizon of three or five years, and were inclined to involve their employees in the planning process. Managers relied strongly on their own research and tourism industry intelligence when formulating business plans. The content of plans tended to focus on operational activities, financial planning and marketing. The study provides a benchmark for the comparison of attraction planning efforts in various contexts. © 2006 Asia Pacific Tourism Association
    corecore