177 research outputs found

    The making of nickel and nickel-alloy shapes by casting, powder metallurgy, electroforming, chemical vapor deposition, and metal spraying

    Get PDF
    Casting, powder metallurgy, electroforming, metal spraying, and chemical vapor deposition techniques for producing nickel and nickel-alloy shape

    βdecay of the 21/2^+ isomer in ^<93>Mo and level structure of ^<93>Nb

    Full text link
    The γ rays associated with β decay of the 21/2^+ isomer in ^Mo (Ex=2.425 MeV, T_=6.85 h) were measured with a selective sensitivity to long-lived isomer decays. A new 1262-keV transition was found in the γ-γ coincidence measurement, and it was attributed to a transition in ^Nb, which is the daughter nucleus of the β decay of the ^Mo isomer, from the 2.753- to the 1.491-MeV levels. Accurate γ-ray intensity balances have determined the β-decay intensity from the ^Mo isomer to the 2.753-MeV level in ^Nb and placed no appreciable intensity for the previously reported β-decay branching to the 2.180-MeV level, for which a recent in-beam γ-ray experiment assigned to be I^π = 17/2^-. Based on the γ-ray intensities from the 2.753-MeV level, spin-parity assignment of this level was revised from 21/2^+ to 19/2^+. The observed β-decay intensity and the spin-parity assignment were explained by the jj-coupling shell model calculations

    Use of Cryopreserved Osteogenic Matrix Cell Sheets for Bone Reconstruction

    Get PDF
    Abstract Skeletal diseases, such as nonunion and osteonecrosis, are now treatable with tissue engineering techniques. Single cell sheets called osteogenic matrix cell sheets (OMCSs) grown from cultured bone marrow-derived mesenchymal stem cells show high osteogenic potential; however, long preparation times currently limit their clinical application. Here, we report a cryopreservation OMCS transplantation method that shortens OMCS preparation time. Cryopreserved rat OMCSs were prepared using slow-and rapid-freezing methods, thawed, and subsequently injected scaffold-free into subcutaneous sites. Rapid-and slow-frozen OMCSs were also transplanted directly to the femur bone at sites of injury. Slow-freezing resulted in higher cell viability than rapid freezing, yet all two cryopreservation methods yielded OMCSs that survived and formed bone tissue. In the rapid-and slow-freezing groups, cortical gaps were repaired and bone continuity was observed within 6 weeks of OMCS transplantation. Moreover, while no significant difference was found in osteocalcin expression between the three experimental groups, the biomechanical strength of femurs treated with slow-frozen OMCSs was significantly greater than those of non-transplant at 6 weeks post-injury. Collectively, these data suggest that slow-frozen OMCSs have superior osteogenic potential and are better suited to produce a mineralized matrix and repair sites of bone injury

    BAERLIN2014 -The influence of land surface types on and the horizontal heterogeneity of air pollutant levels in Berlin

    Get PDF
    Urban air quality and human health are among the key aspects of future urban planning. In order to address pollutants such as ozone and particulate matter, efforts need to be made to quantify and reduce their concentrations. One important aspect in understanding urban air quality is the influence of urban vegetation which may act as both emitter and sink for trace gases and aerosol particles. In this context, the "Berlin Air quality and Ecosystem Research: Local and long-range Impact of anthropogenic and Natural hydrocarbons 2014" (BAERLIN2014) campaign was conducted between 2 June and 29 August in the metropolitan area of Berlin and Brandenburg, Germany. The predominant goals of the campaign were (1) the characterization of urban gaseous and particulate pollution and its attribution to anthropogenic and natural sources in the region of interest, especially considering the connection between biogenic volatile organic compounds and particulates and ozone; (2) the quantification of the impact of urban vegetation on organic trace gas levels and the presence of oxidants such as ozone; and (3) to explain the local heterogeneity of pollutants by defining the distribution of sources and sinks relevant for the interpretation of model simulations. In order to do so, the campaign included stationary measurements at urban background station and mobile observations carried out from bicycle, van and airborne platforms. This paper provides an overview of the mobile measurements (Mobile BAERLIN2014) and general conclusions drawn from the analysis. Bicycle measurements showed micro-scale variations of temperature and particulate matter, displaying a substantial reduction of mean temperatures and particulate levels in the proximity of vegetated areas compared to typical urban residential area (background) measurements. Van measurements extended the area covered by bicycle observations and included continuous measurements of O3, NOx, CO, CO2 and point-wise measurement of volatile organic compounds (VOCs) at representative sites for traffic- and vegetation-affected sites. The quantification displayed notable horizontal heterogeneity of the short-lived gases and particle number concentrations. For example, baseline concentrations of the traffic-related chemical species CO and NO varied on average by up to ±22.2 and ±63.5 %, respectively, on the scale of 100 m around any measurement location. Airborne observations revealed the dominant source of elevated urban particulate number and mass concentrations being local, i.e., not being caused by long-range transport. Surface-based observations related these two parameters predominantly to traffic sources. Vegetated areas lowered the pollutant concentrations substantially with ozone being reduced most by coniferous forests, which is most likely caused by their reactive biogenic VOC emissions. With respect to the overall potential to reduce air pollutant levels, forests were found to result in the largest decrease, followed by parks and facilities for sports and leisure. Surface temperature was generally 0.6–2.1 °C lower in vegetated regions, which in turn will have an impact on tropospheric chemical processes. Based on our findings, effective future mitigation activities to provide a more sustainable and healthier urban environment should focus predominantly on reducing fossil-fuel emissions from traffic as well as on increasing vegetated areas

    Comparison of hemodynamic and nutritional parameters between older persons practicing regular physical activity, nonsmokers and ex-smokers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sedentary lifestyle combined with smoking, contributes to the development of a set of chronic diseases and to accelerating the course of aging. The aim of the study was to compare the hemodynamic and nutritional parameters between elderly persons practicing regular physical activity, nonsmokers and ex-smokers.</p> <p>Methods</p> <p>The sample was comprised of 40 elderly people practicing regular physical activity for 12 months, divided into a Nonsmoker Group and an Ex-smoker Group. During a year four trimestrial evaluations were performed, in which the hemodynamic (blood pressure, heart rate- HR and VO<sub>2</sub>) and nutritional status (measured by body mass index) data were collected. The paired t-test and t-test for independent samples were applied in the intragroup and intergroup analysis, respectively.</p> <p>Results</p> <p>The mean age of the groups was 68.35 years, with the majority of individuals in the Nonsmoker Group being women (n = 15) and the Ex-smoker Group composed of men (n = 11). In both groups the variables studied were within the limits of normality for the age. HR was diminished in the Nonsmoker Group in comparison with the Ex-smoker Group (p = 0.045) between the first and last evaluation. In the intragroup analysis it was verified that after one year of exercise, there was significant reduction in the HR in the Nonsmoker Group (p = 0.002) and a significant increase in VO<sub>2 </sub>for the Ex-smoker Group (p = 0.010). There are no significant differences between the hemodynamic and nutritional conditions in both groups.</p> <p>Conclusion</p> <p>In elderly persons practicing regular physical activity, it was observed that the studied variables were maintained over the course of a year, and there was no association with the history of smoking, except for HR and VO<sub>2</sub>.</p

    River water quality assessment using environmentric techniques : case study of Jakara River Basin.

    Get PDF
    akara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p = 0.930, p = 0.001) and BOD5 and COD (r p = 0.839, p = 0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future research should therefore concentrate on the investigation of temporal variations of water quality in the basin
    corecore