79 research outputs found

    Discovery of an outflow of the very low-mass star ISO 143

    Full text link
    We discover that the very young very low-mass star ISO143 (M5) is driving an outflow based on spectro-astrometry of forbidden [SII] emission lines at 6716A and 6731A observed in UVES/VLT spectra. This adds another object to the handful of brown dwarfs and very low-mass stars (M5-M8) for which an outflow has been confirmed and which show that the T Tauri phase continues at very low masses. We find the outflow of ISO143 to be intrinsically asymmetric and the accretion disk to not obscure the outflow, as only the red outflow component is visible in the [SII] lines. ISO143 is only the third T Tauri object showing a stronger red outflow component in spectro-astrometry, after RW Aur (G5) and ISO217 (M6.25). We show here that including ISO143 two out of seven outflows confirmed in the very low-mass regime (M5-M8) are intrinsically asymmetric. We measure a spatial extension of the outflow in [SII] of up to 200-300 mas (about 30-50 AU) and velocities of up to 50-70 km/s. We furthermore detect line emission of ISO143 in CaII (8498), OI (8446), HeI (7065), and weakly in [FeII] (7155). Based on a line profile analysis and decomposition we demonstrate that (i) the CaII emission can be attributed to chromospheric activity, a variable wind, and the magnetospheric infall zone, (ii) the OI emission mainly to accretion-related processes but also a wind, and (iii) the HeI emission to chromospheric or coronal activity. We estimate a mass outflow rate of ISO143 of ~10^{-10} Msol/yr and a mass accretion rate in the range of ~10^{-8} to ~10^{-9} Msol/yer. These values are consistent with those of other brown dwarfs and very low-mass stars. The derived Mout/Macc ratio of 1-20% is not supporting previous findings of this number to be very large (>40%) for very low-mass objects.Comment: Accepted for publication at A&A; 9 pages, 5 figures. Minor changes due to language editin

    Benchmarking mesa isochrones against the Hyades single star sequence

    Get PDF
    Based on GAIA Early Data Release 3 (EDR3), we revisit and update our sample of bonafide single stars in the Hyades open cluster. The small observational uncertainties in parallax and photometry of EDR3 result in a tightly defined stellar sequence, which is ideal for the testing and calibration of theoretical stellar evolutionary tracks and isochrones. We benchmark the solar-scaled mesa evolutionary models against the single star sequence. We find that the non-rotating mesa models for [Fe/H] = +0.25 provide a good fit for stars with masses above 0.85, and very low mass stars below 0.25 M⊙. For stars with masses between 0.25 and 0.85 M⊙, the models systematically under predict the observed stellar luminosity. One potential limitation of the models for partially convective stars more massive than 0.35 M⊙ is the prescription of (superadiabatic) convection with the mixing-length theory parameter αML tuned to match the Solar model. Below 0.35 M⊙, the increased scatter in the stellar sequence might be a manifestation of the convective kissing instability, which is driven by variations in the 3He nuclear energy production rate due to instabilities at the convective core to envelope boundary. For a Hyades-like stellar population, the application of solar-scaled models to subsolar mass stars could result in a significant underestimate of the age, or an overestimate of the metallicity. We suggest that future grids of solar-scaled evolutionary stellar models could be complemented by Hyades-scaled models in the mass range 0.25 to 0.85 M⊙. © 2022 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society

    Search for giant planets around seven white dwarfs in the Hyades cluster with the Hubble Space Telescope

    Full text link
    Only a small number of exoplanets have been identified in stellar cluster environments. We initiated a high angular resolution direct imaging search using the Hubble Space Telescope (HST) and its Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) instrument for self-luminous giant planets in orbit around seven white dwarfs in the 625 Myr old nearby (≈45 pc) Hyades cluster. The observations were obtained with Near-Infrared Camera 1 (NIC1) in the F110W and F160W filters, and encompass two HST roll angles to facilitate angular differential imaging. The difference images were searched for companion candidates, and radially averaged contrast curves were computed. Though we achieve the lowest mass detection limits yet for angular separations ≥0.5 arcsec, no planetary mass companion to any of the seven white dwarfs, whose initial main-sequence masses were >2.8 M⊙, was found. Comparison with evolutionary models yields detection limits of ≈5-7 Jupiter masses (MJup) according to one model, and between 9 and ≈12 MJup according to another model, at physical separations corresponding to initial semimajor axis of ≥5-8 au (i.e. before the mass-loss events associated with the red and asymptotic giant branch phase of the host star). The study provides further evidence that initially dense cluster environments, which included O- and B-type stars, might not be highly conducive to the formation of massive circumstellar discs, and their transformation into giant planets (with m ≥ 6 MJup and a ≥6 au). This is in agreement with radial velocity surveys for exoplanets around G- and K-type giants, which did not find any planets around stars more massive than ≈3 M⊙. © 2021 Oxford University Press. All rights reserved.We thank S. Reffert, S. Röser, J. van Cleve, and S. Xu for helpful comments on a draft of the paper. This paper is based on observations made with the NASA/ESA Hubble Space Telescope (GO 9737), obtained from the data archive at the Space Telescope Science Institute (STScI). STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement

    A global cloud map of the nearest known brown dwarf

    Full text link
    Brown dwarfs -- substellar bodies more massive than planets but not massive enough to initiate the sustained hydrogen fusion that powers self-luminous stars -- are born hot and slowly cool as they age. As they cool below about 2,300 K, liquid or crystalline particles composed of calcium aluminates, silicates and iron condense into atmospheric 'dust', which disappears at still cooler temperatures (around 1,300 K). Models to explain this dust dispersal include both an abrupt sinking of the entire cloud deck into the deep, unob- servable atmosphere and breakup of the cloud into scattered patches (as seen on Jupiter and Saturn). Thus far, observations of brown dwarfs have been limited to globally integrated measurements, which can reveal surface inhomogeneities but cannot unambiguously resolve surface features. Here we report a two-dimensional map of a brown dwarf's surface that allows identification of large-scale bright and dark features, indicative of patchy clouds.Comment: 17 pages, 8 figures. Spectra and map available upon reques

    First light of the VLT planet finder SPHERE. II. The physical properties and the architecture of the young systems PZ Tel and HD 1160 revisited

    Get PDF
    [Abridged] Context. The young systems PZ Tel and HD 1160, hosting known low-mass companions, were observed during the commissioning of the new planet finder SPHERE with several imaging and spectroscopic modes. Aims. We aim to refine the physical properties and architecture of both systems. Methods. We use SPHERE commissioning data and REM observations, as well as literature and unpublished data from VLT/SINFONI, VLT/NaCo, Gemini/NICI, and Keck/NIRC2. Results. We derive new photometry and confirm the nearly daily photometric variability of PZ Tel A. Using literature data spanning 38 yr, we show that the star also exhibits a long-term variability trend. The 0.63-3.8 mic SED of PZ Tel B allows us to revise its properties: spectral type M7+/-1, Teff=2700+/-100 K, log(g)<4.5 dex, log(L/L_Sun)=-2.51+/-0.10 dex, and mass 38-72 MJ. The 1-3.8 mic SED of HD 1160 B suggests a massive brown dwarf or a low-mass star with spectral type M5.5-7.0, Teff=3000+/-100 K, [M/H]=-0.5-0.0 dex, log(L/L_Sun)=-2.81+/-0.10 dex, and mass 39-168 MJ. We confirm the deceleration and high eccentricity (e>0.66) of PZ Tel B. For e<0.9, the inclination, longitude of the ascending node, and time of periastron passage are well constrained. The system is seen close to an edge-on geometry. We reject other brown dwarf candidates outside 0.25" for both systems, and massive giant planets (>4 MJ) outside 0.5" for the PZ Tel system. We also show that K1-K2 color can be used with YJH low-resolution spectra to identify young L-type companions, provided high photometric accuracy (<0.05 mag) is achieved. Conclusions. SPHERE opens new horizons in the study of young brown dwarfs and giant exoplanets thanks to high-contrast imaging capabilities at optical and near-infrared wavelengths, as well as high signal-to-noise spectroscopy in the near-infrared from low (R~30-50) to medium resolutions (R~350).Comment: 25 pages, 23 figures, accepted for publication in A&A on Oct. 13th, 2015; version including language editing. Typo on co-author name on astroph page corrected, manuscript unchange

    An L Band Spectrum of the Coldest Brown Dwarf

    Get PDF
    The coldest brown dwarf, WISE 0855, is the closest known planetary-mass, free-floating object and has a temperature nearly as cold as the solar system gas giants. Like Jupiter, it is predicted to have an atmosphere rich in methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint at near-infrared wavelengths and emits almost all its energy in the mid-infrared. Skemer et al. 2016 presented a spectrum of WISE 0855 from 4.5-5.1 micron (M band), revealing water vapor features. Here, we present a spectrum of WISE 0855 in L band, from 3.4-4.14 micron. We present a set of atmosphere models that include a range of compositions (metallicities and C/O ratios) and water ice clouds. Methane absorption is clearly present in the spectrum. The mid-infrared color can be better matched with a methane abundance that is depleted relative to solar abundance. We find that there is evidence for water ice clouds in the M band spectrum, and we find a lack of phosphine spectral features in both the L and M band spectra. We suggest that a deep continuum opacity source may be obscuring the near-infrared flux, possibly a deep phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE 0855 provide critical constraints for cold planetary atmospheres, bridging the temperature range between the long-studied solar system planets and accessible exoplanets. JWST will soon revolutionize our understanding of cold brown dwarfs with high-precision spectroscopy across the infrared, allowing us to study their compositions and cloud properties, and to infer their atmospheric dynamics and formation processes.Comment: 19 pages, 21 figures. Accepted for publication in Ap

    The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system (Corrigendum)

    Get PDF
    peer reviewedThe LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia
    corecore