1,995 research outputs found

    Magnetoresistance of Granular Superconducting Metals in a Strong Magnetic Field

    Full text link
    The magnetoresistance of a granular superconductor in a strong magnetic field is considered. It is assumed that this field destroys the superconducting gap in each grain, such that all interesting effects considered in the paper are due to superconducting fluctuations. The conductance of the system is assumed to be large, which allows us to neglect all localization effects as well as the Coulomb interaction. It is shown that at low temperatures the superconducting fluctuations reduce the one-particle density of states but do not contribute to transport. As a result, the resistivity of the normal state exceeds the classical resistivity approaching the latter only in the limit of extremely strong magnetic fields, and this leads to a negative magnetoresistance. We present detailed calculations of physical quatities relevant for describing the effect and make a comparison with existing experiments.Comment: 24 pages, 10 figure

    Quantum interference and Coulomb interaction in arrays of tunnel junctions

    Full text link
    We study the electronic properties of an array of small metallic grains connected by tunnel junctions. Such an array serves as a model for a granular metal. Previous theoretical studies of junction arrays were based on models of quantum dissipation which did not take into account the diffusive motion of electrons within the grains. We demonstrate that these models break down at sufficiently low temperatures: for a correct description of the screening properties of a granular metal at low energies the diffusive nature of the electronic motion within the grains is crucial. We present both a diagrammatic and a functional integral approach to analyse the properties of junction arrays. In particular, a new effective action is obtained which enables us to describe the array at arbitrary temperature. In the low temperature limit, our theory yields the correct, dynamically screened Coulomb interaction of a normal metal, whereas at high temperatures the standard description in terms of quantum dissipation is recovered.Comment: 14 pages, 7 figure

    A New Frequency-Luminosity Relation for Long GRBs?

    Full text link
    We have studied power density spectra (PDS) of 206 long Gamma-Ray Bursts (GRBs). We fitted the PDS with a simple power-law and extracted the exponent of the power-law (alpha) and the noise-crossing threshold frequency (f_th). We find that the distribution of the extracted alpha peaks around -1.4 and that of f_th around 1 Hz. In addition, based on a sub-set of 58 bursts with known redshifts, we show that the redshift-corrected threshold frequency is positively correlated with the isotropic peak luminosity. The correlation coefficient is 0.57 +/- 0.03.Comment: 9 pages, 17 figures, 1 table; Accepted for publication in MNRA

    Negative Magnetoresistance of Granular Metals in a Strong Magnetic Field

    Full text link
    The magnetoresistance of a granular superconductor in a strong magnetic field destroying the gap in each grain is considered. It is assumed that the tunneling between grains is sufficiently large such that all conventional effects of localization can be neglected. A non-trivial sensitivity to the magnetic field comes from superconducting fluctuations leading to the formation of virtual Cooper pairs and reducing the density of states. At low temperature, the pairs do not contribute to the macroscopic transport but their existence can drastically reduce the conductivity. Growing the magnetic field one destroys the fluctuations, which improves the metallic properties and leads to the negative magnetoresistance.Comment: 4 pages, 1 figure, RevTe

    Efficiency Crisis of Swift Gamma-Ray Bursts with Shallow X-ray Afterglows: Prior Activity or Time-Dependent Microphysics?

    Get PDF
    Most X-ray afterglows of gamma-ray bursts (GRBs) observed by the Swift satellite have a shallow decay phase t^{-1/2} in the first few hours. This is not predicted by the standard afterglow model and needs an explanation. We discuss that the shallow decay requires an unreasonably high gamma-ray efficiency, >75-90%, within current models, which is difficult to produce by internal shocks. Such a crisis may be avoided if a weak relativistic explosion occurs ~10^3-10^6 s prior to the main burst or if the microphysical parameter of the electron energy increases during the shallow decay, \epsilon_e ~ t^{1/2}. The former explanation predicts a very long precursor, while both prefer dim optical flashes from the reverse shock, as was recently reported. We also calculate the multi-wavelength afterglows and compare them with observations. No optical break at the end of the shallow X-ray decay indicates a preference for the time-dependent microphysics model with additionally decaying magnetic fields, \epsilon_B ~ t^{-0.6}.Comment: 7 pages, 1 figure, accepted for publication in A&

    Coulomb blockade in metallic grains at large conductance

    Full text link
    We study Coulomb blockade effects in the thermodynamic quantities of a weakly disordered metallic grain coupled to a metallic lead by a tunneling contact with a large conductance gTg_T. We consider the case of broken time-reversal symmetry and obtain expressions for both the {\em ensemble averaged} amplitude of the Coulomb blockade oscillations of the thermodynamic potential and the correlator of its {\em mesoscopic fluctuations} for a finite mean level spacing ÎŽ\delta in the grain. We develop a novel method which allows for an exact evaluation of the functional integral arising from disorder averaging. The results and the method are applicable in the temperature range ÎŽâ‰ȘTâ‰ȘEC\delta \ll T \ll E_C.Comment: 18 pages, 3 figures (revised version

    Evidence for Warped Disks of Young Stars in the Galactic Center

    Get PDF
    The central parsec around the super-massive black hole in the Galactic Center hosts more than 100 young and massive stars. Outside the central cusp (R~1") the majority of these O and Wolf-Rayet (WR) stars reside in a main clockwise system, plus a second, less prominent disk or streamer system at large angles with respect to the main system. Here we present the results from new observations of the Galactic Center with the AO-assisted near-infrared imager NACO and the integral field spectrograph SINFONI on the ESO/VLT. These include the detection of 27 new reliably measured WR/O stars in the central 12" and improved measurements of 63 previously detected stars, with proper motion uncertainties reduced by a factor of four compared to our earlier work. We develop a detailed statistical analysis of their orbital properties and orientations. Half of the WR/O stars are compatible with being members of a clockwise rotating system. The rotation axis of this system shows a strong transition as a function of the projected distance from SgrA*. The main clockwise system either is either a strongly warped single disk with a thickness of about 10 degrees, or consists of a series of streamers with significant radial variation in their orbital planes. 11 out of 61 clockwise moving stars have an angular separation of more than 30 degrees from the clockwise system. The mean eccentricity of the clockwise system is 0.36+/-0.06. The distribution of the counter-clockwise WR/O star is not isotropic at the 98% confidence level. It is compatible with a coherent structure such as stellar filaments, streams, small clusters or possibly a disk in a dissolving state. The observed disk warp and the steep surface density distribution favor in situ star formation in gaseous accretion disks as the origin of the young stars.Comment: ApJ in pres
    • 

    corecore