2,704 research outputs found

    On partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency

    Full text link
    Concurrent systems are notoriously difficult to analyze, and technological advances such as weak memory architectures greatly compound this problem. This has renewed interest in partial order semantics as a theoretical foundation for formal verification techniques. Among these, symbolic techniques have been shown to be particularly effective at finding concurrency-related bugs because they can leverage highly optimized decision procedures such as SAT/SMT solvers. This paper gives new fundamental results on partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency. In particular, we give the theoretical basis for a decision procedure that can handle a fragment of concurrent programs endowed with least fixed point operators. In addition, we show that a certain partial order semantics of relaxed sequential consistency is equivalent to the conjunction of three extensively studied weak memory axioms by Alglave et al. An important consequence of this equivalence is an asymptotically smaller symbolic encoding for bounded model checking which has only a quadratic number of partial order constraints compared to the state-of-the-art cubic-size encoding.Comment: 15 pages, 3 figure

    UTP Semantics for BigrTiMo

    Get PDF

    Helium and Hydrogen Line Ratios and The Stellar Content of Compact HII Regions

    Get PDF
    We present observations and models of the behaviour of the HI and HeI lines between 1.6 and 2.2um in a small sample of compact HII regions. As in our previous papers on planetary nebulae, we find that the `pure' 1.7007um 4^3D-3^3P and 2.16475um 7^(3,1)G-4^(3,1)F HeI recombination lines behave approximately as expected as the effective temperature of the central exciting star(s) increases. However, the 2.058um 2^1P-2^1S HeI line does not behave as the model predicts, or as seen in planetary nebulae. Both models and planetary nebulae showed a decrease in the HeI 2^1P-2^1S/HI Br gamma ratio above an effective temperature of 40000K. The compact HII regions do not show any such decrease. The problem with this line ratio is probably due to the fact that the photoionisation model does not account correctly for the high densities seen in these HII regions, and that we are therefore seeing more collisional excitation of the 2^1P level than the model predicts. It may also reflect some deeper problem in the assumed model stellar atmospheres. In any event, although the normal HeI recombination lines can be used to place constraints on the temperature of the hottest star present, the HeI 2^1P-2^1S/HI Br gamma ratio should not be used for this purpose in either Galactic HII regions or in starburst galaxies, and conclusions from previous work using this ratio should be regarded with extreme caution. We also show that the combination of the near infrared `pure' recombination line ratios with mid-infrared forbidden line data provides a good discriminant of the form of the far ultraviolet spectral energy distribution of the exciting star(s). From this we conclude that CoStar models are a poor match to the available data for our sources, though the more recent WM-basic models are a better fit.Comment: Accepted for publication in MNRA

    IR Dust Bubbles: Probing the Detailed Structure and Young Massive Stellar Populations of Galactic HII Regions

    Full text link
    We present an analysis of wind-blown, parsec-sized, mid-infrared bubbles and associated star-formation using GLIMPSE/IRAC, MIPSGAL/MIPS and MAGPIS/VLA surveys. Three bubbles from the Churchwell et al. (2006) catalog were selected. The relative distribution of the ionized gas (based on 20 cm emission), PAH emission (based on 8 um, 5.8 um and lack of 4.5 um emission) and hot dust (24 um emission) are compared. At the center of each bubble there is a region containing ionized gas and hot dust, surrounded by PAHs. We identify the likely source(s) of the stellar wind and ionizing flux producing each bubble based upon SED fitting to numerical hot stellar photosphere models. Candidate YSOs are also identified using SED fitting, including several sites of possible triggered star formation.Comment: 37 pages, 17 figure

    Resolved 24.5 micron emission from massive young stellar objects

    Full text link
    Massive young stellar objects (MYSO) are surrounded by massive dusty envelopes. Our aim is to establish their density structure on scales of ~1000 AU, i.e. a factor 10 increase in angular resolution compared to similar studies performed in the (sub)mm. We have obtained diffraction-limited (0.6") 24.5 micron images of 14 well-known massive star formation regions with Subaru/COMICS. The images reveal the presence of discrete MYSO sources which are resolved on arcsecond scales. For many sources, radiative transfer models are capable of satisfactorily reproducing the observations. They are described by density powerlaw distributions (n(r) ~ r^(-p)) with p = 1.0 +/-0.25. Such distributions are shallower than those found on larger scales probed with single-dish (sub)mm studies. Other sources have density laws that are shallower/steeper than p = 1.0 and there is evidence that these MYSOs are viewed near edge-on or near face-on, respectively. The images also reveal a diffuse component tracing somewhat larger scale structures, particularly visible in the regions S140, AFGL 2136, IRAS 20126+4104, Mon R2, and Cep A. We thus find a flattening of the MYSO envelope density law going from ~10 000 AU down to scales of ~1000 AU. We propose that this may be evidence of rotational support of the envelope (abridged).Comment: 21 pages, accepted for A&

    The RMS Survey: The Bolometric Fluxes and Luminosity Distributions of Young Massive Stars

    Full text link
    Context: The Red MSX Source (RMS) survey is returning a large sample of massive young stellar objects (MYSOs) and ultra-compact (UC) \HII{} regions using follow-up observations of colour-selected candidates from the MSX point source catalogue. Aims: To obtain the bolometric fluxes and, using kinematic distance information, the luminosities for young RMS sources with far-infrared fluxes. Methods: We use a model spectral energy distribution (SED) fitter to obtain the bolometric flux for our sources, given flux data from our work and the literature. The inputs to the model fitter were optimised by a series of investigations designed to reveal the effect varying these inputs had on the resulting bolometric flux. Kinematic distances derived from molecular line observations were then used to calculate the luminosity of each source. Results: Bolometric fluxes are obtained for 1173 young RMS sources, of which 1069 have uniquely constrained kinematic distances and good SED fits. A comparison of the bolometric fluxes obtained using SED fitting with trapezium rule integration and two component greybody fits was also undertaken, and showed that both produce considerable scatter compared to the method used here. Conclusions: The bolometric flux results allowed us to obtain the luminosity distributions of YSOs and UC\HII{} regions in the RMS sample, which we find to be different. We also find that there are few MYSOs with L ≥\geq 105^{5}\lsol{}, despite finding many MYSOs with 104^{4}\lsol{} ≥\geq L ≥\geq 105^{5}\lsol{}.Comment: 12 pages, 12 figures, 3 tables, accepted to A&A. The full versions of tables 1 and 2 will be available via the CDS upon publicatio

    A discrete geometric model of concurrent program execution

    Get PDF
    A trace of the execution of a concurrent object-oriented program can be displayed in two-dimensions as a diagram of a non-metric finite geometry. The actions of a programs are represented by points, its objects and threads by vertical lines, its transactions by horizontal lines, its communications and resource sharing by sloping arrows, and its partial traces by rectangular figures. We prove informally that the geometry satisfies the laws of Concurrent Kleene Algebra (CKA); these describe and justify the interleaved implementation of multithreaded programs on computer systems with a lesser number of concurrent processors. More familiar forms of semantics (e.g., verification-oriented and operational) can be derived from CKA. Programs are represented as sets of all their possible traces of execution, and non-determinism is introduced as union of these sets. The geometry is extended to multiple levels of abstraction and granularity; a method call at a higher level can be modelled by a specification of the method body, which is implemented at a lower level. The final section describes how the axioms and definitions of the geometry have been encoded in the interactive proof tool Isabelle, and reports on progress towards automatic checking of the proofs in the paper

    Formal Proof of SCHUR Conjugate Function

    Full text link
    The main goal of our work is to formally prove the correctness of the key commands of the SCHUR software, an interactive program for calculating with characters of Lie groups and symmetric functions. The core of the computations relies on enumeration and manipulation of combinatorial structures. As a first "proof of concept", we present a formal proof of the conjugate function, written in C. This function computes the conjugate of an integer partition. To formally prove this program, we use the Frama-C software. It allows us to annotate C functions and to generate proof obligations, which are proved using several automated theorem provers. In this paper, we also draw on methodology, discussing on how to formally prove this kind of program.Comment: To appear in CALCULEMUS 201
    • …
    corecore