2,704 research outputs found

    Imaging spontaneous imbibition in full Darcy‐scale samples at pore‐scale resolution by fast X‐ray tomography

    Get PDF
    Spontaneous imbibition is a process occurring in a porous medium which describes wetting phase replacing nonwetting phase spontaneously due to capillary forces. This process is conventionally investigated by standardized, well-established spontaneous imbibition tests. In these tests, for instance, a rock sample is surrounded by wetting fluid. The following cumulative production of nonwetting phase versus time is used as a qualitative measure for wettability. However, these test results are difficult to interpret, because many rocks do not show a homogeneous but a mixed wettability in which the wetting preference of a rock varies from location to location. Moreover, during the test the flow regime typically changes from countercurrent to cocurrent flow and no phase pressure or pressure drop can be recorded. To help interpretation, we complement Darcy-scale production curves with X-ray imaging to describe the differences in imbibition processes between water-wet and mixed-wet systems. We found that the formation of a spontaneous imbibition front occurs only for water-wet systems; mixed-wet systems show localized imbibition events only. The asymmetry of the front depends on the occurrence of preferred production sites, which influences interpretation. Fluid layers on the outside of mixed-wet samples increase connectivity of the drained phase and the effect of buoyancy on spontaneous imbibition. The wider implication of our study is the demonstration of the capability of benchtop laboratory equipment to image a full Darcy-scale experiment while at the same time obtaining pore-scale information, resolving the natural length and time scale of the underlying processes

    Quantitative assay for farnesol and the aromatic fusel alcohols from the fungus \u3ci\u3eCandida albicans\u3c/i\u3e

    Get PDF
    The dimorphic fungus Candida albicans is a commensal and opportunistic fungal pathogen of humans. It secretes at least four small lipophilic molecules, farnesol and three aromatic fusel alcohols. Farnesol has been identified as both a quorum sensing molecule (QSM) and a virulence factor. Our gas chromatography (GC)-based assay for these molecules exhibits high throughput, prevention of analyte loss by avoiding filtration and rotary evaporation, simultaneous cell lysis and analyte extraction by ethyl acetate, and the ability to compare whole cultures with their cell pellets and supernatants. Farnesol synthesis and secretion were separable phenomena and pellet:supernatant ratios for farnesol were high, up to 12:1. The assay was validated in terms of precision, specificity, ruggedness, accuracy, solution stability, detection limits (DL), quantitation limits (QL), and dynamic range. The DL for farnesol was 0.02 ng/μl (0.09 μM). Measurement quality was assessed by the relative error of the whole culture versus the sum of pellet and supernatant fractions (WPS). C. albicans strain SC5314 grown at 30 °C in complex and defined media (YPD and mRPMI) was assayed in biological triplicate 17 times over 3 days. Farnesol and the three aromatic fusel alcohols can be measured in the same assay. The levels of all four are greatly altered by the growth medium chosen. Significantly, the three fusel alcohols are synthesized during stationary phase, not during growth. They are secreted quickly without being retained in the cell pellet and may accumulate up to mM concentrations

    The High Arctic in Extreme Winters: Vortex, Temperature, and MLS and ACE-FTS Trace Gas Evolution

    Get PDF
    The first three Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Campaigns at Eureka (80° N, 86° W) were during two extremes of Arctic winter variability: Stratospheric sudden warmings (SSWs) in 2004 and 2006 were among the strongest, most prolonged on record; 2005 was a record cold winter. New satellite measurements from ACE-Fourier Transform Spectrometer (ACE-FTS), Sounding of the Atmosphere using Broadband Emission Radiometry, and Aura Microwave Limb Sounder (MLS), with meteorological analyses and Eureka lidar and radiosonde temperatures, are used to detail the meteorology in these winters, to demonstrate its influence on transport and chemistry, and to provide a context for interpretation of campaign observations. During the 2004 and 2006 SSWs, the vortex broke down throughout the stratosphere, reformed quickly in the upper stratosphere, and remained weak in the middle and lower stratosphere. The stratopause reformed at very high altitude, above where it could be accurately represented in the meteorological analyses. The 2004 and 2006 Eureka campaigns were during the recovery from the SSWs, with the redeveloping vortex over Eureka. 2005 was the coldest winter on record in the lower stratosphere, but with an early final warming in mid-March. The vortex was over Eureka at the start of the 2005 campaign, but moved away as it broke up. Disparate temperature profile structure and vortex evolution resulted in much lower (higher) temperatures in the upper (lower) stratosphere in 2004 and 2006 than in 2005. Satellite temperatures agree well with Eureka radiosondes, and with lidar data up to 50–60 km. Consistent with a strong, cold upper stratospheric vortex and enhanced radiative cooling after the SSWs, MLS and ACE-FTS trace gas measurements show strongly enhanced descent in the upper stratospheric vortex during the 2004 and 2006 Eureka campaigns compared to that in 2005

    Grasses continue to trump trees at soil carbon sequestration following herbivore exclusion in a semiarid African savanna

    Get PDF
    Although studies have shown that mammalian herbivores often limit aboveground carbon storage in savannas, their effects on belowground soil carbon storage remain unclear. Using three sets of long‐term, large herbivore exclosures with paired controls, we asked how almost two decades of herbivore removal from a semiarid savanna in Laikipia, Kenya affected aboveground (woody and grass) and belowground soil carbon sequestration, and determined the major source (C3 vs. C4) of belowground carbon sequestered in soils with and without herbivores present. Large herbivore exclusion, which included a diverse community of grazers, browsers, and mixed‐feeding ungulates, resulted in significant increases in grass cover (~22%), woody basal area (~8 m2/ha), and woody canopy cover (31%), translating to a ~8.5 t/ha increase in aboveground carbon over two decades. Herbivore exclusion also led to a 54% increase (20.5 t/ha) in total soil carbon to 30‐cm depth, with ~71% of this derived from C4 grasses (vs. ~76% with herbivores present) despite substantial increases in woody cover. We attribute this continued high contribution of C4 grasses to soil C sequestration to the reduced offtake of grass biomass with herbivore exclusion together with the facilitative influence of open sparse woody canopies (e.g., Acacia spp.) on grass cover and productivity in this semiarid system

    Galaxy Merger Candidates in High-Redshift Cluster Environments

    Get PDF
    We compile a sample of spectroscopically- and photometrically-selected cluster galaxies from four high-redshift galaxy clusters (1.59<z<1.711.59 < z < 1.71) from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS), and a comparison field sample selected from the UKIDSS Deep Survey. Using near-infrared imaging from the \textit{Hubble Space Telescope} we classify potential mergers involving massive (M3×1010MM_* \geq 3\times 10^{10}\mathrm{M}_\odot) cluster members by eye, based on morphological properties such as tidal distortions, double nuclei, and projected near neighbors within 20 kpc. With a catalogue of 23 spectroscopic and 32 photometric massive cluster members across the four clusters and 65 spectroscopic and 26 photometric comparable field galaxies, we find that after taking into account contamination from interlopers, 11.05.6+7.0%11.0 ^{+7.0}_{-5.6}\% of the cluster members are involved in potential mergers, compared to 24.74.6+5.3%24.7^{+5.3}_{-4.6}\% of the field galaxies. We see no evidence of merger enhancement in the central cluster environment with respect to the field, suggesting that galaxy-galaxy merging is not a stronger source of galaxy evolution in cluster environments compared to the field at these redshifts.Comment: Accepted by Ap
    corecore