229 research outputs found

    Vascularity and perfusion of human gliomas xenografted in the athymic nude mouse.

    Get PDF
    The vascularisation and perfusion of seven subcutaneously xenografted human glioma lines established from surgical specimens has been analysed using an anti-collagen type IV antibody to visualise the vascular walls in combination with a perfusion marker (Hoechst 33342). A computer-based digital image processing system was employed for quantitative analysis of the parameters. The vascular architecture of individual tumours belonging to the same tumour line showed a consistent similarity, while substantial differences occurred between the various tumour lines derived from different patients. Despite the presence of a large inter-tumour variation in vascular area as a proportion of the tumour area, this vascular parameter clearly showed tumour line-specific characteristics. The perfused fraction of the tumour vessels also showed a large inter-tumour variation for all tumour lines ranging from 20% to 85%, but the majority of tumours of all lines had perfusion fractions of more than 55%. Despite large variation, the perfused vascular area as a proportion of the tumour cross-sectional area exhibited clear tumour line-specific tendencies. These observations suggest that consistent differences in vascular parameters are present between glioma xenograft lines, although the tumour lines all originated from histologically similar human high-grade gliomas. These differences may have important consequences for treatment and clinical behaviour of this type of tumour

    Neuronal nitric oxide synthase contributes to the regulation of hematopoiesis

    Get PDF
    Nitric oxide (NO) signaling is important for the regulation of hematopoiesis. However, the role of individual NO synthase (NOS) isoforms is unclear. Our results indicate that the neuronal NOS isoform (nNOS) regulates hematopolesis in vitro and in vivo. nNOS is expressed in adult bone marrow and fetal liver and is enriched in stromal cells. There is a strong correlation between expression of nNOS in a panel of stromal cell lines established from bone marrow and fetal liver and the ability of these cell lines to support hematopoietic stem cells; furthermore, NO donor can further increase this ability. The number of colonies generated in vitro from the bone marrow and spleen of nNOS-null mutants is increased relative to wild-type or inducible- or endothelial NOS knockout mice. These results describe a new role for nNOS beyond its action in the brain and muscle and suggest a model where nNOS, expressed in stromal cells, produces NO which acts as a paracrine regulator of hematopoietic stem cells

    Marrow angiogenesis-associated factors as prognostic biomarkers in patients with acute myelogenous leukaemia

    Get PDF
    Bone marrow (BM) neoangiogenesis plays an important role in acute myelogenous leukaemia (AML), and depends on the interplay of members of the vascular endothelial growth factor (VEGF) and angiopoietin (Ang) families. We determined the marrow levels of seven molecules associated with angiogenesis in 52 AML patients before chemotherapy and 20 healthy controls: VEGF-A, VEGF/PlGF, VEGF-C, VEGF-D, Ang-1, Ang-2, and Tie-2. All the molecules were quantified using enzyme-linked immunosorbent assay (ELISA). Comparing to normal controls, the marrow levels of VEGF/PlGF, Ang-2, and Tie-2 were significantly higher, and those of VEGF-C and Ang-1 were significantly lower in the AML patients (P<0.001). A total of 31 patients were further subjected to survival analysis. Patients with lower Tie-2 (<26 ng ml−1) and Ang-2 levels (<4500 pg ml−1) displayed a survival advantage (P=0.037 and 0.042, respectively), same as patients with higher VEGF/PlGF (⩾1 pg ml−1) and VEGF-D levels (⩾350 pg ml−1) (P=0.020 and 0.016, respectively). An angio-index ((Ang-2 × Tie-2)/(VEGF/PlGF × VEGF-D)) was established and multivariate Cox regression analysis revealed that patients with higher angio-index values (⩾50) displayed poor prognosis (hazard ratio 5.91, 95% confidence interval 1.99–17.56; P=0.001). The angio-index is closely associated with the clinical outcome of AML patients and may be valuable in disease prognosis

    A physiologically based kinetic model for elucidating the in vivo distribution of administered mesenchymal stem cells

    Get PDF
    Although mesenchymal stem cells (MSCs) present a promising tool in cell therapy for the treatment of various diseases, the in vivo distribution of administered MSCs has still been poorly understood, which hampers the precise prediction and evaluation of their therapeutic efficacy. Here, we developed the first model to characterize the physiological kinetics of administered MSCs based on direct visualization of cell spatiotemporal disposition by intravital microscopy and assessment of cell quantity using flow cytometry. This physiologically based kinetic model was validated with multiple external datasets, indicating potential inter-route and inter-species predictive capability. Our results suggest that the targeting efficiency of MSCs is determined by the lung retention and interaction between MSCs and target organs, including cell arrest, depletion and release. By adapting specific parameters, this model can be easily applied to abnormal conditions or other types of circulating cells for designing treatment protocols and guiding future experiments

    A process model of the formation of spatial presence experiences

    Get PDF
    In order to bridge interdisciplinary differences in Presence research and to establish connections between Presence and “older” concepts of psychology and communication, a theoretical model of the formation of Spatial Presence is proposed. It is applicable to the exposure to different media and intended to unify the existing efforts to develop a theory of Presence. The model includes assumptions about attention allocation, mental models, and involvement, and considers the role of media factors and user characteristics as well, thus incorporating much previous work. It is argued that a commonly accepted model of Spatial Presence is the only solution to secure further progress within the international, interdisciplinary and multiple-paradigm community of Presence research

    Serum after Autologous Transplantation Stimulates Proliferation and Expansion of Human Hematopoietic Progenitor Cells

    Get PDF
    Regeneration after hematopoietic stem cell transplantation (HSCT) depends on enormous activation of the stem cell pool. So far, it is hardly understood how these cells are recruited into proliferation and self-renewal. In this study, we have addressed the question if systemically released factors are involved in activation of hematopoietic stem and progenitor cells (HPC) after autologous HSCT. Serum was taken from patients before chemotherapy, during neutropenia and after hematopoietic recovery. Subsequently, it was used as supplement for in vitro culture of CD34+ cord blood HPC. Serum taken under hematopoietic stress (4 to 11 days after HSCT) significantly enhanced proliferation, maintained primitive immunophenotype (CD34+, CD133+, CD45−) for more cell divisions and increased colony forming units (CFU) as well as the number of cobblestone area-forming cells (CAFC). The stimulatory effect decays to normal levels after hematopoietic recovery (more than 2 weeks after HSCT). Chemokine profiling revealed a decline of several growth-factors during neutropenia, including platelet-derived growth factors PDGF-AA, PDGF-AB and PDGF-BB, whereas expression of monocyte chemotactic protein-1 (MCP-1) increased. These results demonstrate that systemically released factors play an important role for stimulation of hematopoietic regeneration after autologous HSCT. This feedback mechanism opens new perspectives for in vivo stimulation of the stem cell pool

    Pharmacological Inhibition of Caspase and Calpain Proteases: A Novel Strategy to Enhance the Homing Responses of Cord Blood HSPCs during Expansion

    Get PDF
    Background: Expansion of hematopoietic stem/progenitor cells (HSPCs) is a well-known strategy employed to facilitate the transplantation outcome. We have previously shown that the prevention of apoptosis by the inhibition of cysteine proteases, caspase and calpain played an important role in the expansion and engraftment of cord blood (CB) derived HSPCs. We hypothesize that these protease inhibitors might have maneuvered the adhesive and migratory properties of the cells rendering them to be retained in the bone marrow for sustained engraftment. The current study was aimed to investigate the mechanism of the homing responses of CB cells during expansion. Methodology/Principal Findings: CB derived CD34 + cells were expanded using a combination of growth factors with and without Caspase inhibitor-zVADfmk or Calpain 1 inhibitor- zLLYfmk. The cells were analyzed for the expression of homingrelated molecules. In vitro adhesive/migratory interactions and actin polymerization dynamics of HSPCs were assessed. In vivo homing assays were carried out in NOD/SCID mice to corroborate these observations. We observed that the presence of zVADfmk or zLLYfmk (inhibitors) caused the functional up regulation of CXCR4, integrins, and adhesion molecules, reflecting in a higher migration and adhesive interactions in vitro. The enhanced actin polymerization and the RhoGTPase protein expression complemented these observations. Furthermore, in vivo experiments showed a significantly enhanced homing to the bone marrow of NOD/SCID mice

    Pathophysiology, diagnosis and treatment of somatosensory tinnitus: a scoping review

    Get PDF
    Somatosensory tinnitus is a generally agreed subtype of tinnitus that is associated with activation of the somatosensory, somatomotor, and visual-motor systems. A key characteristic of somatosensory tinnitus is that is modulated by physical contact or movement. Although it seems common, its pathophysiology, assessment and treatment are not well defined. We present a scoping review on the pathophysiology, diagnosis, and treatment of somatosensory tinnitus, and identify priority directions for further research. Methods: Literature searches were conducted in Google Scholar, PubMed, and EMBASE databases. Additional broad hand searches were conducted with the additional terms etiology, diagnose, treatment. Results: Most evidence on the pathophysiology of somatosensory tinnitus suggests that somatic modulations are the result of altered or cross-modal synaptic activity within the dorsal cochlear nucleus or between the auditory nervous system and other sensory subsystems of central nervous system (e.g., visual or tactile). Presentations of somatosensory tinnitus are varied and evidence for the various approaches to treatment promising but limited. Discussion and Conclusions: Despite the apparent prevalence of somatosensory tinnitus its underlying neural processes are still not well understood. Necessary involvement of multidisciplinary teams in its diagnosis and treatment has led to a large heterogeneity of approaches whereby tinnitus improvement is often only a secondary effect. Hence there are no evidence-based clinical guidelines, and patient care is empirical rather than research-evidence-based. Somatic testing should receive further attention considering the breath of evidence on the ability of patients to modulate their tinnitus through manouvers. Specific questions for further research and review are indicated

    Classification of Inhibitors of Hepatic Organic Anion Transporting Polypeptides (OATPs): Influence of Protein Expression on Drug–Drug Interactions

    Get PDF
    ABSTRACT: The hepatic organic anion transporting poly-peptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drug−drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general inhibitors of OATP1B1, OATP1B3, and OATP2B1. The maximal transport activity (MTA) of each OATP in human liver was predicted from transport kinetics and protein quantification. We then used MTA to predict the effects of a subset of inhibitors on atorvastatin uptake in vivo. Using a data set of 225 drug-like compounds, 91 OATP inhibitors were identified. In silico models indicated that lipophilicity and polar surface area are key molecular features of OATP inhibition. MTA predictions identified OATP1B1 and OATP1B3 as major determinants of atorvastatin uptake in vivo. The relative contributions to overall hepatic uptake varied with isoform specificities of the inhibitors
    corecore