273 research outputs found
The Percolation Signature of the Spin Glass Transition
Magnetic ordering at low temperature for Ising ferromagnets manifests itself
within the associated Fortuin-Kasteleyn (FK) random cluster representation as
the occurrence of a single positive density percolating network. In this paper
we investigate the percolation signature for Ising spin glass ordering -- both
in short-range (EA) and infinite-range (SK) models -- within a two-replica FK
representation and also within the different Chayes-Machta-Redner two-replica
graphical representation. Based on numerical studies of the EA model in
three dimensions and on rigorous results for the SK model, we conclude that the
spin glass transition corresponds to the appearance of {\it two} percolating
clusters of {\it unequal} densities.Comment: 13 pages, 6 figure
The reference frame for encoding and retention of motion depends on stimulus set size
YesThe goal of this study was to investigate the reference
frames used in perceptual encoding and storage of visual
motion information. In our experiments, observers viewed
multiple moving objects and reported the direction of motion
of a randomly selected item. Using a vector-decomposition
technique, we computed performance during smooth pursuit
with respect to a spatiotopic (nonretinotopic) and to a
retinotopic component and compared them with performance
during fixation, which served as the baseline. For the stimulus
encoding stage, which precedes memory, we found that the
reference frame depends on the stimulus set size. For a single
moving target, the spatiotopic reference frame had the most
significant contribution with some additional contribution
from the retinotopic reference frame. When the number of
items increased (Set Sizes 3 to 7), the spatiotopic reference
frame was able to account for the performance. Finally, when
the number of items became larger than 7, the distinction
between reference frames vanished. We interpret this finding
as a switch to a more abstract nonmetric encoding of motion
direction. We found that the retinotopic reference frame was
not used in memory. Taken together with other studies, our
results suggest that, whereas a retinotopic reference frame
may be employed for controlling eye movements, perception
and memory use primarily nonretinotopic reference frames.
Furthermore, the use of nonretinotopic reference frames appears
to be capacity limited. In the case of complex stimuli, the
visual system may use perceptual grouping in order to simplify
the complexity of stimuli or resort to a nonmetric abstract
coding of motion information
Small Heat Shock Proteins Potentiate Amyloid Dissolution by Protein Disaggregases from Yeast and Humans
The authors define how small heat-shock proteins synergize to regulate the assembly and disassembly of a beneficial prion, and then they exploit this knowledge to identify the human amyloid depolymerase
A Percolation-Theoretic Approach to Spin Glass Phase Transitions
The magnetically ordered, low temperature phase of Ising ferro- magnets is
manifested within the associated Fortuin-Kasteleyn (FK) random cluster
representation by the occurrence of a single positive density percolating
cluster. In this paper, we review our recent work on the percolation signature
for Ising spin glass ordering -- both in the short-range Edwards-Anderson (EA)
and infinite-range Sherrington-Kirkpatrick (SK) models -- within a two-replica
FK representation and also in the different Chayes-Machta-Redner two-replica
graphical representation. Numerical studies of the EA model in
dimension three and rigorous results for the SK model are consistent in
supporting the conclusion that the signature of spin-glass order in these
models is the existence of a single percolating cluster of maximal density
normally coexisting with a second percolating cluster of lower density.Comment: Based on lectures given at the 2007 Paris Summer School "Spin
Glasses." 12 pages, 3 figure
How Awareness Changes the Relative Weights of Evidence During Human Decision-Making
A combined behavioral and brain imaging study shows how sensory awareness and stimulus visibility can influence the dynamics of decision-making in humans
The Mammalian Disaggregase Machinery: Hsp110 Synergizes with Hsp70 and Hsp40 to Catalyze Protein Disaggregation and Reactivation in a Cell-Free System
Bacteria, fungi, protozoa, chromista and plants all harbor homologues of Hsp104, a AAA+ ATPase that collaborates with Hsp70 and Hsp40 to promote protein disaggregation and reactivation. Curiously, however, metazoa do not possess an Hsp104 homologue. Thus, whether animal cells renature large protein aggregates has long remained unclear. Here, it is established that mammalian cytosol prepared from different sources possesses a potent, ATP-dependent protein disaggregase and reactivation activity, which can be accelerated and stimulated by Hsp104. This activity did not require the AAA+ ATPase, p97. Rather, mammalian Hsp110 (Apg-2), Hsp70 (Hsc70 or Hsp70) and Hsp40 (Hdj1) were necessary and sufficient to slowly dissolve large disordered aggregates and recover natively folded protein. This slow disaggregase activity was conserved to yeast Hsp110 (Sse1), Hsp70 (Ssa1) and Hsp40 (Sis1 or Ydj1). Hsp110 must engage substrate, engage Hsp70, promote nucleotide exchange on Hsp70, and hydrolyze ATP to promote disaggregation of disordered aggregates. Similarly, Hsp70 must engage substrate and Hsp110, and hydrolyze ATP for protein disaggregation. Hsp40 must harbor a functional J domain to promote protein disaggregation, but the J domain alone is insufficient. Optimal disaggregase activity is achieved when the Hsp40 can stimulate the ATPase activity of Hsp110 and Hsp70. Finally, Hsp110, Hsp70 and Hsp40 fail to rapidly remodel amyloid forms of the yeast prion protein, Sup35, or the Parkinson's disease protein, alpha-synuclein. However, Hsp110, Hsp70 and Hsp40 enhanced the activity of Hsp104 against these amyloid substrates. Taken together, these findings suggest that Hsp110 fulfils a subset of Hsp104 activities in mammals. Moreover, they suggest that Hsp104 can collaborate with the mammalian disaggregase machinery to rapidly remodel amyloid conformers
Cytoplasmic Incompatibility as a Means of Controlling Culex pipiens quinquefasciatus Mosquito in the Islands of the South-Western Indian Ocean
The use of the bacterium Wolbachia is an attractive alternative method to control vector populations. In mosquitoes, as in members of the Culex pipiens complex, Wolbachia induces a form of embryonic lethality called cytoplasmic incompatibility, a sperm-egg incompatibility occurring when infected males mate either with uninfected females or with females infected with incompatible Wolbachia strain(s). Here we explore the feasibility of the Incompatible Insect Technique (IIT), a species-specific control approach in which field females are sterilized by inundative releases of incompatible males. We show that the Wolbachia wPip(Is) strain, naturally infecting Cx. p. pipiens mosquitoes from Turkey, is a good candidate to control Cx. p. quinquefasciatus populations on four islands of the south-western Indian Ocean (La Réunion, Mauritius, Grande Glorieuse and Mayotte). The wPip(Is) strain was introduced into the nuclear background of Cx. p. quinquefasciatus mosquitoes from La Réunion, leading to the LR[wPip(Is)] line. Total embryonic lethality was observed in crosses between LR[wPip(Is)] males and all tested field females from the four islands. Interestingly, most crosses involving LR[wPip(Is)] females and field males were also incompatible, which is expected to reduce the impact of any accidental release of LR[wPip(Is)] females. Cage experiments demonstrate that LR[wPip(Is)] males are equally competitive with La Réunion males resulting in demographic crash when LR[wPip(Is)] males were introduced into La Réunion laboratory cages. These results, together with the geographic isolation of the four south-western Indian Ocean islands and their limited land area, support the feasibility of an IIT program using LR[wPip(Is)] males and stimulate the implementation of field tests for a Cx. p. quinquefasciatus control strategy on these islands
Analytical formalism for determining quantum-wire and quantum-dot band structure in the multiband envelope-function approximation
- …
