79 research outputs found

    Spin-Exchange Interaction in ZnO-based Quantum Wells

    Get PDF
    Wurtzitic ZnO/(Zn,Mg)O quantum wells grown along the (0001) direction permit unprecedented tunability of the short-range spin exchange interaction. In the context of large exciton binding energies and electron-hole exchange interaction in ZnO, this tunability results from the competition between quantum confinement and giant quantum confined Stark effect. By using time-resolved photoluminescence we identify, for well widths under 3 nm, the redistribution of oscillator strengths between the A and B excitonic transitions, due to the enhancement of the exchange interaction. Conversely, for wider wells, the redistribution is cancelled by the dominant effect of internal electric fields, which dramatically reduce the exchange energy.Comment: 14 pages, 3 figure

    Comparison of strong coupling regimes in bulk GaAs, GaN and ZnO semiconductor microcavities

    Full text link
    Wide bandgap semiconductors are attractive candidates for polariton-based devices operating at room temperature. We present numerical simulations of reflectivity, transmission and absorption spectra of bulk GaAs, GaN and ZnO microcavities, in order to compare the particularities of the strong coupling regime in each system. Indeed the intrinsic properties of the excitons in these materials result in a different hierarchy of energies between the valence-band splitting, the effective Rydberg and the Rabi energy, defining the characteristics of the exciton-polariton states independently of the quality factor of the cavity. The knowledge of the composition of the polariton eigenstates is central to optimize such systems. We demonstrate that, in ZnO bulk microcavities, only the lower polaritons are good eigenstates and all other resonances are damped, whereas upper polaritons can be properly defined in GaAs and GaN microcavities

    Polarized emission of GaN/AlN quantum dots : single dot spectroscopy and symmetry-based theory

    Get PDF
    We report micro-photoluminescence studies of single GaN/AlN quantum dots grown along the (0001) crystal axis by molecular beam epitaxy on Si(111) substrates. The emission lines exhibit a linear polarization along the growth plane, but with varying magnitudes of the polarization degree and with principal polarization axes that do not necessarily correspond to crystallographic directions. Moreover, we could not observe any splitting of polarized emission lines, at least within the spectral resolution of our setup (1 meV). We propose a model based on the joint effects of electron-hole exchange interaction and in-plane anisotropy of strain and/or quantum dot shape, in order to explain the quantitative differences between our observations and those previously reported on, e.g. CdTe- or InAs-based quantum dots

    Excitonic recombination dynamics in non-polar GaN/AlGaN quantum wells

    Get PDF
    The optical properties of GaN/Al0.15Ga0.85N multiple quantum wells are examined in 8 K–300 K temperature range. Both polarized CW and time resolved temperature-dependent photoluminescence experiment are performed so that we can deduce the relative contributions of the non-radiative and radiative recombination processes. From the calculation of the proportion of the excitonic population having wave vector in the light cone, we can deduce the variation of the radiative decay time with temperature. We find part of the excitonic population to be localized in concert with the report of Corfdir et al. (Jpn. J. Appl. Phys., Part 2 52, 08JC01 (2013)) in case of a-plane quantum wells

    Can the Pioneer anomaly be of gravitational origin? A phenomenological answer

    Full text link
    In order to satisfy the equivalence principle, any non-conventional mechanism proposed to gravitationally explain the Pioneer anomaly, in the form in which it is presently known from the so-far analyzed Pioneer 10/11 data, cannot leave out of consideration its impact on the motion of the planets of the Solar System as well, especially those orbiting in the regions in which the anomalous behavior of the Pioneer probes manifested itself. In this paper we, first, discuss the residuals of the right ascension \alpha and declination \delta of Uranus, Neptune and Pluto obtained by processing various data sets with different, well established dynamical theories (JPL DE, IAA EPM, VSOP). Second, we use the latest determinations of the perihelion secular advances of some planets in order to put on the test two gravitational mechanisms recently proposed to accommodate the Pioneer anomaly based on two models of modified gravity. Finally, we adopt the ranging data to Voyager 2 when it encountered Uranus and Neptune to perform a further, independent test of the hypothesis that a Pioneer-like acceleration can also affect the motion of the outer planets of the Solar System. The obtained answers are negative.Comment: Latex2e, 26 pages, 6 tables, 2 figure, 47 references. It is the merging of gr-qc/0608127, gr-qc/0608068, gr-qc/0608101 and gr-qc/0611081. Final version to appear in Foundations of Physic

    Positron lifetime measurements on neutron‐irradiated InP crystals

    Get PDF
    Neutron‐irradiated InP single crystals have been investigated by positron‐lifetime measurements. The samples were irradiated with thermal neutrons at different fluences yielding concentrations for Sn‐transmuted atoms between 2×1015 and 2×1018 cm−3. The lifetime spectra have been analyzed into one exponential decay component. The mean lifetimes show a monotonous increase with the irradiation dose from 246 to 282 ps. The increase in the lifetime has been associated to a defect containing an Indium vacancy. Thermal annealing at 550 °C reduces the lifetime until values closed to those obtained for the as‐grown and conventionally doped InP [email protected] ; [email protected]

    Effect of inhomogeneity of the Universe on a gravitationally bound local system: A no-go result for explaining the secular increase in the astronomical unit

    Get PDF
    We will investigate the influence of the inhomogeneity of the universe, especially that of the Lema{\^i}tre-Tolman-Bondi (LTB) model, on a gravitationally bound local system such as the solar system. We concentrate on the dynamical perturbation to the planetary motion and derive the leading order effect generated from the LTB model. It will be shown that there appear not only a well-known cosmological effect arisen from the homogeneous and isotropic model, such as the Robertson-Walker (RW) model, but also the additional terms due to the radial inhomogeneity of the LTB model. We will also apply the obtained results to the problem of secular increase in the astronomical unit, reported by Krasinsky and Brumberg (2004), and imply that the inhomogeneity of the universe cannot have a significant effect for explaining the observed dAU/dt=15±4 [m/century]d{\rm AU}/dt = 15 \pm 4 ~{\rm [m/century]}.Comment: 12 pages, no figure, accepted for publication in Journal of Astrophysics and Astronom

    Relaxation and emission of Bragg-mode and cavity-mode polaritons in a ZnO microcavity at room temperature

    Get PDF
    The strong coupling regime in a ZnO microcavity is investigated through room temperature photoluminescence and reflectivity experiments. The simultaneous strong coupling of excitons to the cavity mode and the first Bragg mode is demonstrated at room temperature. The polariton relaxation is followed as a function of the excitation density. A relaxation bottleneck is evidenced in the Bragg-mode polariton branch. It is partly broken under strong excitation density, so that the emission from this branch dominates the one from cavity-mode polaritons

    Dynamical adjustments in IAU 2000A nutation series arising from IAU 2006 precession

    Full text link
    The adoption of International Astronomical Union (IAU) 2006 precession model, IAU 2006 precession, requires IAU 2000A nutation to be adjusted to ensure compatibility between both theories. This consists of adding small terms to some nutation amplitudes relevant at the microarcsecond level. Those contributions were derived in previously published articles and are incorporated into current astronomical standards. They are due to the estimation process of nutation amplitudes by Very Long Baseline Interferometry (VLBI) and to the changes induced by the J2 rate present in the precession theory. We focus on the second kind of those adjustments, and develop a simple model of the Earth nutation capable of determining all the changes arising in the theoretical construction of the nutation series in a dynamical consistent way. This entails the consideration of three main classes of effects: the J2 rate, the orbital coefficients rate, and the variations induced by the update of some IAU 2006 precession quantities. With this aim, we construct a first order model for the nutations of the angular momentum axis of the non-rigid Earth. Our treatment is based on a Hamiltonian formalism and leads to analytical formulae for the nutation amplitudes in the form of in-phase, out-of-phase, and mixed secular terms. They allow numerical evaluation of the contributions of the former effects. We conclude that the accepted corrections associated with the J2 rate must be supplemented with new, hitherto unconsidered terms of the same order of magnitude, and that these should be incorporated into present standards

    Copernicus Marine Service ocean state report, issue 4

    Get PDF
    This is the final version. Available from Taylor & Francis via the DOI in this record. FCT/MCTE
    corecore