2,193 research outputs found
Interpersonal competencies define effective conservation leadership
Effective leadership is considered essential for conservation success, but there is currently not enough understanding of what conservation leaders are doing, and what they should be doing, in order to be effective. Other sectors, such as health, commerce, education, industry and the military have studied leadership for decades, and have a good knowledge of particular styles and suitable instruments for measuring leadership effectiveness. This study uses the perspectives of conservation professionals through interviews, a focus group and an online survey, to help develop a more comprehensive picture of the role of leaders, and leadership, within the discipline. The study concludes that competencies that relate to interpersonal leadership skills are key for effectiveness, particularly building trust amongst followers. However, leaders in conservation are not showing these to the same extent as they are showing more technical skills. Future conservation training schemes should incorporate these competencies to ensure leaders are effective. Greater understanding can help inform conservation professionals who wish to invest in leadership development schemes to improve effectiveness across conservation initiatives
Automated lithological mapping using airborne hyperspectral thermal infrared data: A case study from Anchorage Island, Antarctica
The thermal infrared portion of the electromagnetic spectrum has considerable potential for mineral and lithological mapping of the most abundant rock-forming silicates that do not display diagnostic features at visible and shortwave infrared wavelengths. Lithological mapping using visible and shortwave infrared hyperspectral data is well developed and established processing chains are available, however there is a paucity of such methodologies for hyperspectral thermal infrared data. Here we present a new fully automated processing chain for deriving lithological maps from hyperspectral thermal infrared data and test its applicability using the first ever airborne hyperspectral thermal data collected in the Antarctic. A combined airborne hyperspectral survey, targeted geological field mapping campaign and detailed mineralogical and geochemical datasets are applied to small test site in West Antarctica where the geological relationships are representative of continental margin arcs. The challenging environmental conditions and cold temperatures in the Antarctic meant that the data have a significantly lower signal to noise ratio than is usually attained from airborne hyperspectral sensors. We applied preprocessing techniques to improve the signal to noise ratio and convert the radiance images to ground leaving emissivity. Following preprocessing we developed and applied a fully automated processing chain to the hyperspectral imagery, which consists of the following six steps: (1) superpixel segmentation, (2) determine the number of endmembers, (3) extract endmembers from superpixels, (4) apply fully constrained linear unmixing, (5) generate a predictive classification map, and (6) automatically label the predictive classes to generate a lithological map. The results show that the image processing chain was successful, despite the low signal to noise ratio of the imagery; reconstruction of the hyperspectral image from the endmembers and their fractional abundances yielded a root mean square error of 0.58%. The results are encouraging with the thermal imagery allowing clear distinction between granitoid types. However, the distinction of fine grained, intermediate composition dykes is not possible due to the close geochemical similarity with the country rock
Seasonal variability of forest sensitivity to heat and drought stresses: A synthesis based on carbon fluxes from North American forest ecosystems.
Climate extremes such as heat waves and droughts are projected to occur more frequently with increasing temperature and an intensified hydrological cycle. It is important to understand and quantify how forest carbon fluxes respond to heat and drought stress. In this study, we developed a series of daily indices of sensitivity to heat and drought stress as indicated by air temperature (Ta ) and evaporative fraction (EF). Using normalized daily carbon fluxes from the FLUXNET Network for 34 forest sites in North America, the seasonal pattern of sensitivities of net ecosystem productivity (NEP), gross ecosystem productivity (GEP) and ecosystem respiration (RE) in response to Ta and EF anomalies were compared for different forest types. The results showed that warm temperatures in spring had a positive effect on NEP in conifer forests but a negative impact in deciduous forests. GEP in conifer forests increased with higher temperature anomalies in spring but decreased in summer. The drought-induced decrease in NEP, which mostly occurred in the deciduous forests, was mostly driven by the reduction in GEP. In conifer forests, drought had a similar dampening effect on both GEP and RE, therefore leading to a neutral NEP response. The NEP sensitivity to Ta anomalies increased with increasing mean annual temperature. Drier sites were less sensitive to drought stress in summer. Natural forests with older stand age tended to be more resilient to the climate stresses compared to managed younger forests. The results of the Classification and Regression Tree analysis showed that seasons and ecosystem productivity were the most powerful variables in explaining the variation of forest sensitivity to heat and drought stress. Our results implied that the magnitude and direction of carbon flux changes in response to climate extremes are highly dependent on the seasonal dynamics of forests and the timing of the climate extremes
Road cycle TT performance: Relationship to the power-duration model and association with FTP
Purpose: To determine the accuracy of critical power (CP) and Wʹ (the curvature constant of the power-duration relationship) derived from self-paced time-trial (TT) prediction trials using mobile power meters to predict 16.1 km road cycling TT performance. This study also aimed to test the agreement between functional threshold power (FTP) and CP. Methods: Twelve competitive male cyclists completed an incremental test to exhaustion, a 16.1-km road TT, an FTP test, and 4–5 self-paced TT bouts on a stationary bike within the lab, using mobile power meters. Results: CP and Wʹ derived from the power-duration relationship closely predicted TT performance. The 16.1 km road TT completion time (26.7 ± 2.2 min) was significantly correlated with the predicted time-to-completion (27.5 ± 3.3 min, r= 0.89, P0.05); however, the limits of agreement between CP and FTP were 30 to -36 W. Discussion: The findings of this study indicate that CP and Wʹ determined using mobile power meters during maximal, self-paced TT prediction trials can be used to accurately predict 16.1-km cycling performance, supporting the application of the CP and Wʹ for performance prediction. However, whilst we demonstrated that the FTP was not significantly different from CP, the limits of agreement were too large to consider FTP and CP interchangeable
Proxy Indicators for Mapping the End of the Vegetation Active Period in Boreal Forests Inferred from Satellite-Observed Soil Freeze and ERA-Interim Reanalysis Air Temperature
Triggered by decreases in photoperiod and temperature, evergreen needle-leaved trees in the boreal region downregulate photosynthetic activity and enter dormancy in autumn. Accompanying changes in canopy structure and chlorophyll content are small and precede the cessation of photosynthetic activity. Low solar elevation and cloud cover during this period pose additional challenges for the use of optical satellite instruments. Alternatively, environmental variables that correlate with photosynthesis, such as soil freeze, can be detected from satellite microwave observations independent of weather and illumination conditions. We tested for the first time the usability of satellite-observed soil freeze from the Soil Moisture and Ocean Salinity (SMOS) instrument as a proxy indicator for the end of vegetation active period (VAPend) at six eddy covariance sites in Finland and Canada. The time when soil freeze commenced over the large SMOS pixel can be employed to estimate VAPend (R-2=0.84, RMSE=7.5days), defined as the time when the photosynthetic capacity of the forest drops below 10% of the growing season maximum. In comparison to satellite-based soil freeze timing, an air temperature-based proxy from ERA-Interim reanalysis data showed better performance (R-2=0.92, RMSE=5.2days). VAPend was mapped in the boreal forest zone in Finland and Canada from both indicators based on linear regression models.Peer reviewe
Can a Satellite-Derived Estimate of the Fraction of PAR Absorbed by Chlorophyll (FAPAR(sub chl)) Improve Predictions of Light-Use Efficiency and Ecosystem Photosynthesis for a Boreal Aspen Forest?
Gross primary production (GPP) is a key terrestrial ecophysiological process that links atmospheric composition and vegetation processes. Study of GPP is important to global carbon cycles and global warming. One of the most important of these processes, plant photosynthesis, requires solar radiation in the 0.4-0.7 micron range (also known as photosynthetically active radiation or PAR), water, carbon dioxide (CO2), and nutrients. A vegetation canopy is composed primarily of photosynthetically active vegetation (PAV) and non-photosynthetic vegetation (NPV; e.g., senescent foliage, branches and stems). A green leaf is composed of chlorophyll and various proportions of nonphotosynthetic components (e.g., other pigments in the leaf, primary/secondary/tertiary veins, and cell walls). The fraction of PAR absorbed by whole vegetation canopy (FAPAR(sub canopy)) has been widely used in satellite-based Production Efficiency Models to estimate GPP (as a product of FAPAR(sub canopy)x PAR x LUE(sub canopy), where LUE(sub canopy) is light use efficiency at canopy level). However, only the PAR absorbed by chlorophyll (a product of FAPAR(sub chl) x PAR) is used for photosynthesis. Therefore, remote sensing driven biogeochemical models that use FAPAR(sub chl) in estimating GPP (as a product of FAPAR(sub chl x PAR x LUE(sub chl) are more likely to be consistent with plant photosynthesis processes
New challenges in studying nutrition-disease interactions in the developing world.
Latest estimates indicate that nutritional deficiencies account for 3 million child deaths each year in less-developed countries. Targeted nutritional interventions could therefore save millions of lives. However, such interventions require careful optimization to maximize benefit and avoid harm. Progress toward designing effective life-saving interventions is currently hampered by some serious gaps in our understanding of nutrient metabolism in humans. In this Personal Perspective, we highlight some of these gaps and make some proposals as to how improved research methods and technologies can be brought to bear on the problems of undernourished children in the developing world
Relating a Spectral Index from MODIS and Tower-based Measurements to Ecosystem Light Use Efficiency for a Fluxnet-Canada Coniferous Forest
As part of the North American Carbon Program effort to quantify the terrestrial carbon budget of North America, we have been examining the possibility of retrieving ecosystem light use efficiency (LUE, the carbon sequestered per unit photosynthetically active radiation) directly from satellite observations. Our novel approach has been to compare LUE derived from tower fluxes with LUE estimated using spectral indices computed from MODIS satellite observations over forests in the Fluxnet-Canada Research Network, using the MODIS narrow ocean bands acquired over land. We matched carbon flux data collected around the time of the MODIS mid-day overpass for over one hundred relatively clear days in five years (2001-2006) from a mature Douglas fir forest in British Columbia. We also examined hyperspectral reflectance data collected diurnally from the tower in conjunction with the eddy correlation fluxes and meteorological measurements made throughout the 2006 growing season at this site. The tower-based flux data provided an opportunity to examine diurnal and seasonal LUE processes and their relationship to spectral indices at the scale of the forest stand. We evaluated LUE in conjunction with the Photochemical Reflectance Index (PRI), a normalized difference spectral index that uses 531 nm and a reference band to capture responses to high light induced stress afforded by the xanthophyll cycle. Canopy structure information, retrieved from airborne laser scanning radar (LiDAR) observations, was used to partition the forest canopy into sunlit and shaded fractions throughout the day, on numerous days during 2006. At each observation period throughout a day, the PRI was examined for the sunlit, shaded, and intermediate canopy segments defined by their instantaneous position relative to the solar principal plane (SPP). The sunlit sector was associated with the illumination "hotspot" (the reflectance backscatter maximum), the shaded sector with the "cold or dark spot" (the reflectance forward scatter minimum), while the intermediate, mixed sunlit/shade sector was located in the cross-plane to the SPP. The PRI indices clearly captured the differences in leaf groups, with sunlit foliage exhibiting the lowest values on sunny days throughout the 2006 season. When tower-based canopy-level LUE was recalculated to estimate foliage-based values (LUE(sub foilage) for the three foliage groups under their incident light environments, a strong linear relationship for PRI:LUE(sub foilage) was demonstrated (0.6 less than or equal to r(sup 2) less than or equal to 0.8, n=822, P<0.0001). The MODIS data represent relatively large areas when acquired at nadir (approx.1 sq km) or at variable off-nadir view angles (greater than or equal to 1 sq km) looking forward or aft. Nevertheless, a similar relationship between MODIS PRI and tower-based LUE was obtained from satellite observations (r(sup 2) = 0.76, n=105, P= 0.026) when the azimuth offsets from the SPP for off-nadir observations were considered. At this relatively high latitude of 50 degrees, the MODIS directional observations were offset from the SPP by approximately 50 degrees, but still represented backscatter or forward scatter sectors of the bidirectional reflectance distribution function (BRDF). The backscatter observations sampled the sunlit forest and provided lower PRI values, in general, than the forward scatter observations from the shaded forest. Since the hotspot and darkspot were not typically directly observed, the dynamic range for MODIS PRI was less than that observed in the SPP at the canopy level; therefore, MODIS PRI values were more similar to those observed in sifu in the BRDF cross-plane. While not ideal in terms of spatial resolution or optimal viewing configuration, the MODIS observations nevertheless provide a means to monitor forest under stress using narrow spectral band indices and off-nadir observations. This research has stimulated several spin-off studies for remote sensinf LUE, and demonstrates the importance of the connection between ecosystem structure and physiological function
The effects of β-alanine supplementation on muscle pH and the power-duration relationship during high-intensity exercise
Purpose: To investigate the influence of β-alanine (BA) supplementation on muscle carnosine content, muscle pH and the power-duration relationship (i.e., critical power and W′). Methods: In a double-blind, randomized, placebo-controlled study, 20 recreationally-active males (22 ± 3 y, VO˙2peak 3.73 ± 0.44 L·min−1) ingested either BA (6.4 g/d for 28 d) or placebo (PL) (6.4 g/d) for 28 d. Subjects completed an incremental test and two 3-min all-out tests separated by 1-min on a cycle ergometer pre- and post-supplementation. Muscle pH was assessed using 31P-magnetic resonance spectroscopy (MRS) during incremental (INC KEE) and intermittent knee-extension exercise (INT KEE). Muscle carnosine content was determined using 1H-MRS. Results: There were no differences in the change in muscle carnosine content from pre- to post-intervention (PL: 1 ± 16% vs. BA: −4 ± 25%) or in muscle pH during INC KEE or INT KEE (P > 0.05) between PL and BA, but blood pH (PL: −0.06 ± 0.10 vs. BA: 0.09 ± 0.13) during the incremental test was elevated post-supplementation in the BA group only (P < 0.05). The changes from pre- to post-supplementation in critical power (PL: −8 ± 18 W vs. BA: −6 ± 17 W) and W′ (PL: 1.8 ± 3.3 kJ vs. BA: 1.5 ± 1.7 kJ) were not different between groups. No relationships were detected between muscle carnosine content and indices of exercise performance. Conclusions: BA supplementation had no significant effect on muscle carnosine content and no influence on intramuscular pH during incremental or high-intensity intermittent knee-extension exercise. The small increase in blood pH following BA supplementation was not sufficient to significantly alter the power-duration relationship or exercise performance
- …