56,717 research outputs found

    Optimal Control Realizations of Lagrangian Systems with Symmetry

    Full text link
    A new relation among a class of optimal control systems and Lagrangian systems with symmetry is discussed. It will be shown that a family of solutions of optimal control systems whose control equation are obtained by means of a group action are in correspondence with the solutions of a mechanical Lagrangian system with symmetry. This result also explains the equivalence of the class of Lagrangian systems with symmetry and optimal control problems discussed in \cite{Bl98}, \cite{Bl00}. The explicit realization of this correspondence is obtained by a judicious use of Clebsch variables and Lin constraints, a technique originally developed to provide simple realizations of Lagrangian systems with symmetry. It is noteworthy to point out that this correspondence exchanges the role of state and control variables for control systems with the configuration and Clebsch variables for the corresponding Lagrangian system. These results are illustrated with various simple applications

    Double Beta Decay, Nuclear Structure and Physics beyond the Standard Model

    Full text link
    Neutrinoless Double Beta Decay (0νββ0\nu\beta\beta) is presently the only known experiment to distinguisch between Dirac neutrinos, different from their antiparticles, and Majorana neutrinos, identical with their antiparticles. In addition 0νββ0\nu\beta\beta allows to determine the absolute scale of the neutrino masses. This is not possible with neutrino oscillations. To determine the neutrino masses one must assume, that the light Majorana neutrino exchange is the leading mechanism for 0νββ0\nu\beta\beta and that the matrix element of this transition can ba calculated reliably. The experimental 0νββ0\nu\beta\beta transition amplitude in this mechanism is a product of the light left handed effective Majorana neutrino mass and of this transition matrix element. The different methods, Quasi-particle Random Phase Approximation (QRPA), Shell Model (SM), Projected Hartree-Fock-Bogoliubov (PHFB) and Interacting Boson Model (IBM2) used in the literature and the reliability of the matrix elements in these approaches are reviewed. In the second part it is investigated how one can determine the leading mechanism or mechanisms from the data of the 0νββ0\nu\beta\beta decay in different nuclei. Explicite expressions are given for the transition matrix elements. is shown, that possible interference terms allow to test CP (Charge and Parity conjugation) violation.Comment: Contribution to the EPS conference in Eilath: "Nuclear Physics in Astrophysics 5." April 3rd to 8th. 201

    On the heating of source of the Orion KL hot core

    Full text link
    We present images of the J=10-9 rotational lines of HC3N in the vibrationally excited levels 1v7, 1v6 and 1v5 of the hot core (HC) in Orion KL. The images show that the spatial distribution and the size emission from the 1v7 and 1v5 levels are different. While the J=10-9 1v7 line has a size of 4''x 6'' and peaks 1.1'' NE of the 3 mm continuum peak, the J=10--9 1v5 line emission is unresolved (<3'') and peaks 1.3'' south of the 3 mm peak. This is a clear indication that the HC is composed of condensations with very different temperatures (170 K for the 1v7 peak and >230>230 K for the 1v5 peak). The temperature derived from the 1v7 and 1v5 lines increases with the projected distance to the suspected main heating source I. Projection effects along the line of sight could explain the temperature gradient as produced by source I. However, the large luminosity required for source I, >5 10^5 Lsolar, to explain the 1v5 line suggests that external heating by this source may not dominate the heating of the HC. Simple model calculations of the vibrationally excited emission indicate that the HC can be internally heated by a source with a luminosity of 10^5 Lsolar, located 1.2'' SW of the 1v5 line peak (1.8'' south of source I). We also report the first detection of high-velocity gas from vibrationally excited HC3N emission. Based on excitation arguments we conclude that the main heating source is also driving the molecular outflow. We speculate that all the data presented in this letter and the IR images are consistent with a young massive protostar embedded in an edge-on disk.Comment: 13 pages, 3 figures, To be published in Ap.J. Letter
    corecore