2,529 research outputs found

    A non-perturbative estimate of the heavy quark momentum diffusion coefficient

    Get PDF
    We estimate the momentum diffusion coefficient of a heavy quark within a pure SU(3) plasma at a temperature of about 1.5Tc. Large-scale Monte Carlo simulations on a series of lattices extending up to 192^3*48 permit us to carry out a continuum extrapolation of the so-called colour-electric imaginary-time correlator. The extrapolated correlator is analyzed with the help of theoretically motivated models for the corresponding spectral function. Evidence for a non-zero transport coefficient is found and, incorporating systematic uncertainties reflecting model assumptions, we obtain kappa = (1.8 - 3.4)T^3. This implies that the "drag coefficient", characterizing the time scale at which heavy quarks adjust to hydrodynamic flow, is (1.8 - 3.4) (Tc/T)^2 (M/1.5GeV) fm/c, where M is the heavy quark kinetic mass. The results apply to bottom and, with somewhat larger systematic uncertainties, to charm quarks.Comment: 18 pages. v2: clarifications adde

    Towards the continuum limit in transport coefficient computations

    Get PDF
    The analytic continuation needed for the extraction of transport coefficients necessitates in principle a continuous function of the Euclidean time variable. We report on progress towards achieving the continuum limit for 2-point correlator measurements in thermal SU(3) gauge theory, with specific attention paid to scale setting. In particular, we improve upon the determination of the critical lattice coupling and the critical temperature of pure SU(3) gauge theory, estimating r0*Tc ~ 0.7470(7) after a continuum extrapolation. As an application the determination of the heavy quark momentum diffusion coefficient from a correlator of colour-electric fields attached to a Polyakov loop is discussed.Comment: 7 pages. To appear in the Proceedings of the 31st International Symposium on Lattice Field Theory, July 29 - August 3, 2013, Mainz, German

    Intermediate distance correlators in hot Yang-Mills theory

    Full text link
    Lattice measurements of spatial correlation functions of the operators FF and FF-dual in thermal SU(3) gauge theory have revealed a clear difference between the two channels at "intermediate" distances, x ~ 1/(pi T). This is at odds with the AdS/CFT limit which predicts the results to coincide. On the other hand, an OPE analysis at short distances (x << 1/(pi T)) as well as effective theory methods at long distances (x >> 1/(pi T)) suggest differences. Here we study the situation at intermediate distances by determining the time-averaged spatial correlators through a 2-loop computation. We do find unequal results, however the numerical disparity is small. Apart from theoretical issues, a future comparison of our results with time-averaged lattice measurements might also be of phenomenological interest in that understanding the convergence of the weak-coupling series at intermediate distances may bear on studies of the thermal broadening of heavy quarkonium resonances.Comment: 31 page

    The ultraviolet limit and sum rule for the shear correlator in hot Yang-Mills theory

    Full text link
    We determine a next-to-leading order result for the correlator of the shear stress operator in high-temperature Yang-Mills theory. The computation is performed via an ultraviolet expansion, valid in the limit of small distances or large momenta, and the result is used for writing operator product expansions for the Euclidean momentum and coordinate space correlators as well as for the Minkowskian spectral density. In addition, our results enable us to confirm and refine a shear sum rule originally derived by Romatschke, Son and Meyer.Comment: 16 pages, 2 figures. v2: small clarifications, one reference added, published versio

    Sterile neutrinos in cosmology and how to find them in the lab

    Get PDF
    A number of observed phenomena in high energy physics and cosmology lack their resolution within the Standard Model of particle physics. These puzzles include neutrino oscillations, baryon asymmetry of the universe and existence of dark matter. We discuss the suggestion that all these problems can be solved by new physics which exists only below the electroweak scale. The dedicated experiments that can confirm or rule out this possibility are discussed.Comment: Invited talk at XXIII Int. Conf. on Neutrino Physics and Astrophysics, May 25-31, Christchurch, New Zealan

    Unconventional cosmology on the (thick) brane

    Full text link
    We consider the cosmology of a thick codimension 1 brane. We obtain the matching conditions leading to the cosmological evolution equations and show that when one includes matter with a pressure component along the extra dimension in the brane energy-momentum tensor, the cosmology is of non-standard type. In particular one can get acceleration when a dust of non-relativistic matter particles is the only source for the (modified) Friedman equation. Our equations would seem to violate the conservation of energy-momentum from a 4D perspective, but in 5D the energy-momentum is conserved. One could write down an effective conserved 4D energy-momentum tensor attaching a ``dark energy'' component to the energy-momentum tensor of matter that has pressure along the extra dimension. This extra component could, on a cosmological scale, be interpreted as matter-coupled quintessence. We comment on the effective 4D description of this effect in terms of the time evolution of a scalar field (the 5D radion) coupled to this kind of matter.Comment: 9 pages, v2. eq.(17) corrected, comments on effective theory change

    On the Phase Diagram of the SU(2) Adjoint Higgs Model in 2+1 Dimensions

    Get PDF
    The phase diagram is investigated for SU(2) lattice gauge theory in d=3, coupled to adjoint scalars. For small values of the quartic scalar coupling, lambda, the transition separating Higgs and confinement phases is found to be first-order, in agreement with earlier work by Nadkarni. The surface of second-order transitions conjectured by Nadkarni, however, is shown instead to correspond to crossover behaviour. This conclusion is based on a finite size analysis of the scalar mass and susceptibility. The nature of the phase transition at the termination of first-order behaviour is investigated and we find evidence for a critical point at which the scalar mass vanishes. The photon mass and confining string tension are measured and are found to be negligibly small in the Higgs phase. This is correlated with the very small density of magnetic monopoles in the Higgs phase. The string tension and photon mass rise rapidly as the crossover is traversed towards the symmetric phase.Comment: LaTeX. Replaced with version to be published in Physics Letters B. Minor changes onl

    Real-time static potential in hot QCD

    Full text link
    We derive a static potential for a heavy quark-antiquark pair propagating in Minkowski time at finite temperature, by defining a suitable gauge-invariant Green's function and computing it to first non-trivial order in Hard Thermal Loop resummed perturbation theory. The resulting Debye-screened potential could be used in models that attempt to describe the ``melting'' of heavy quarkonium at high temperatures. We show, in particular, that the potential develops an imaginary part, implying that thermal effects generate a finite width for the quarkonium peak in the dilepton production rate. For quarkonium with a very heavy constituent mass M, the width can be ignored for T \lsim g^2 M/12\pi, where g^2 is the strong gauge coupling; for a physical case like bottomonium, it could become important at temperatures as low as 250 MeV. Finally, we point out that the physics related to the finite width originates from the Landau-damping of low-frequency gauge fields, and could be studied non-perturbatively by making use of the classical approximation.Comment: 20 pages. v2: a number of clarifications and a few references added; published versio

    Gauge-invariant strings in the 3d U(1)+Higgs theory

    Get PDF
    We describe how the strings, which are classical solutions of the continuum three-dimensional U(1)+Higgs theory, can be studied on the lattice. The effect of an external magnetic field is also discussed and the first results on the string free energy are presented. It is shown that the string free energy can be used as an order parameter when the scalar self-coupling is large and the transition is continuous.Comment: LATTICE98(higgs); missing author added, no changes to tex

    A non-perturbative contribution to jet quenching

    Get PDF
    It has been argued by Caron-Huot that infrared contributions to the jet quenching parameter in hot QCD, denoted by qhat, can be extracted from an analysis of a certain static-potential related observable within the dimensionally reduced effective field theory. Following this philosophy, the order of magnitude of a non-perturbative contribution to qhat from the colour-magnetic scale, g^2T/pi, is estimated. The result is small; it is probably below the parametrically perturbative but in practice slowly convergent contributions from the colour-electric scale, whose all-orders resummation therefore remains an important challenge.Comment: 4 pages. v2: clarifications, published versio
    • …
    corecore