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The analytic continuation needed for the extraction of transport coefficients necessitates in prin-

ciple a continuous function of the Euclidean time variable.We report on progress towards achiev-

ing the continuum limit for 2-point correlator measurements in thermal SU(3) gauge theory,

with specific attention paid to scale setting. In particular, we improve upon the determination

of the critical lattice coupling and the critical temperature of pure SU(3) gauge theory, estimating

r0Tc ≃ 0.7470(7) after a continuum extrapolation. As an application the determination of the

heavy quark momentum diffusion coefficient from a correlator of colour-electric fields attached

to a Polyakov loop is discussed.
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1. Motivation

Among quantities playing a central role in the theoretical interpretation of heavy ion collision
experiments at RHIC and LHC are so-called transport coefficients: shear and bulk viscosities as
well as heavy and light quark diffusion coefficients. Because of strong interactions, these quantities
need to be determined by numerical lattice Monte Carlo simulations. This represents a challenging
problem, given that numerical simulations are carried out in Euclidean signature, whereas transport
coefficients are Minkowskian quantities, necessitating ananalytic continuation [1]. Nevertheless,
the problem is solvable in principle [2], provided that lattice simulations reach a continuum limit
and that short-distance singularities can be subtracted [3]. The purpose of this investigation is to
probe the practical feasibility of these steps, by approaching the continuum limit for a particular
2-point correlator in pure SU(3) gauge theory, related to heavy-quark diffusion (cf. eq. (4.1)). An
important ingredient in reaching the continuum limit is scale setting, so we start by discussing
issues related to this topic in secs. 2, 3.

2. Improved determination of the SU(3) phase diagram

When SU(3) lattice gauge theory is discretized according toWilson’s classic prescription, and
an infinite spatial-volume limit is taken, the theory contains two parameters: the number of lattice
sites in the temporal direction, denoted byNτ , and the lattice coupling, denoted byβ . The phase
diagram in the plane (Nτ ,β ) contains a line of first order transitions; for a givenNτ , the critical
point is denoted byβc. The continuum limit corresponds toNτ → ∞, βc → ∞.

Because of computational limitations, lattice simulations were historically carried out at small
values ofNτ . In fact, previous to our study,βc had been reliably determined only forNτ = 4−
12 [4, 5]; for instance, already atNτ = 16 the best results available came from a lattice 16×243

which does not correspond to the required infinite-volume limit. In addition to simulations, semi-
analytic frameworks have recently been developed for estimating βc [6, 7], however these may
contain uncontrolled uncertainties.

We have carried out new simulations atNτ = 10,12,14,16, in each case with at least two
spatial lattice sizes, denoted byNs, in the rangeNs>∼3Nτ . The critical pointβc is determined from
the peak position of the susceptibility related to the Polyakov loop. A unique∆β = h× (Nτ/Ns)

3

with h≈ 0.07 is employed for infinite spatial-volume extrapolations.For illustration we display in
fig. 1(left) our Polyakov loop susceptibility data on a 14× 403 lattice (atNs/Nτ ≈ 2.9) and their
corresponding Ferrenberg-Swendsen reweighting (denotedby the curve in the figure). Using the
peak position of this data (the triangle) and a similar data set for a 14×563 lattice (atNs/Nτ = 4)
a finite-size extrapolation givesβc(Nτ = 14) = 6.4488(59).

In fig. 1(right) we display our results for the critical coupling for Nτ = 10, 12, 14 and 16.
Also shown are old results from refs. [4, 5] and the results ofsemi-analytic computations from
refs. [6, 7]. Our results forNτ = 10 and 12 agree with the old ones within errors whereas for larger
Nτ , βc has now been determined relatively reliably for the first time. Even though our current
estimate atNτ = 16 is preliminary (βc(Nτ = 16)≃ 6.5509(39)), it can be seen that the semi-analytic
calculations miss some of the structure in the data.
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Figure 1: Left: Polyakov loop susceptibilityχP ≡ Vspatial(〈P2〉 − 〈P〉2) for a 14×403 box in pure SU(3)
lattice gauge theory with the Wilson action. Right: Published data forβc, from Bielefeld (BI) [4] and Lucini
et al [5], compared with our new data points atNτ = 10,12,14,16. Data from Langelage et al [6] and an
interpolation to the results of Cheng and Tomboulis [7] represent semi-analytic studies.

3. Conversion of results to physical units

When transport coefficients are measured, then simulationsare carried out a temperature above
the critical temperature (denoted byTc); for a fixedNτ , this corresponds toβ > βc. For any given
β , it is possible to carry out a corresponding zero-temperature simulation, on a latticeN4

s , in order
to measure some physical quantity. Thereby the temperaturecan be expressed in terms of a chosen
reference scale; from the results of sec. 2, in turn, the reference scale can be determined in terms
of Tc. Expressing everything in units ofTc may increase the value of the results, given thatT/Tc is
a quantity which allows e.g. to compare many related theories.

Various reference scales have been used in the past. The mosttraditional one is the root of the
string tension, denoted by

√
σ . The problem is that it is determined from a fit to the large-distance

asymptotics of a static potential (or its derivative, the static force), but such fits are delicate, because
the correct ansatz needs to be known and also because measurements at large distances are subtle.
Quite concretely, some of the numbers cited by various groups, Tc/

√
σ = 0.630(5) [4] versus

Tc/
√

σ = 0.646(3) [5], differ by a value much larger than the statistical error.

Another possible scale is the so-called Sommer scale, denoted byr0 [8]. In this case the scale is
determined from the static force at intermediate distances, which removes the need for fitting. The
price to pay is that the discreteness of the lattice hampers the measurement, and an interpolation
together with tree-level improvement is probably needed for stable results [8]. A value forr0Tc has
been obtained in ref. [9]:r0Tc = 0.7498(50).

Recently a possible new scale was introduced, denoted by
√

t0 [10]. For any givenβ , the
lattice configuration is “cooled” through a classical Wilson flow until a certain observable reaches a
prescribed value, at timet0. There is no fitting involved, and no interpolation;t0 therefore probably
suffers from less systematic uncertainties than the other scale choices.
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Figure 2: Left: Continuum extrapolation forr0Tc. The conversion fromβc to r0/a is based on refs. [11, 12]
and additional new simulations, together with a rational fitfrom ref. [13] (inset). The resultr0Tc = 0.7470(7)
can be contrasted withr0Tc = 0.7498(50) from ref. [9]. (For comparisons with perturbation theory,r0ΛMS =

0.602(48) from ref. [14] yieldsTc/ΛMS = 1.24(10); ref. [15] suggestsr0ΛMS ≃ 0.637(32)which would yield
Tc/ΛMS ≃ 1.17(6).) Right: Preliminary results for

√
t0Tc as a function ofa2/t0.

Considering first the Sommer scale, the data of fig. 1(right) can be used for determining the
dimensionless combinationr0Tc; the results are shown in fig. 2(left). The results display the ex-
pected O(a2) behaviour and can be extrapolated to the continuum. We obtain r0Tc ≃ 0.7470(7)
which agrees with an earlier result from ref. [9] but displays a much reduced error.

We also have preliminary estimates for
√

t0Tc, obtained at different lattice extensions from
zero-temperature simulations atβ = βc(Nτ = 4,6,8,12), and shown in fig. 2(right). Increasing the
statistics and number of lattice ensembles hopefully yields accurate results for

√
t0Tc.

4. Application to heavy quark diffusion

Heavy quarks carry a colour charge and, whenever there are gauge fields present, are subject
to a coloured Lorentz force, which adjusts their velocitiesto those corresponding to kinetic equilib-
rium (this corresponds to the physics of diffusion). Through linear response theory the effectiveness
of the adjustment can be related to a “colour-electric correlator” [16, 17],

GE(τ)≡−1
3

3

∑
i=1

〈

ReTr
[

U( 1
T ;τ)gEi(τ ,0)U(τ ;0)gEi(0,0)

]〉

〈

ReTr[U( 1
T ;0)]

〉 , (4.1)

wheregEi denotes the colour-electric field,T the temperature, andU(τ2;τ1) a Wilson line in the
Euclidean time direction. A discretized version of this correlator is shown in fig. 3.

Preliminary lattice measurements of the colour-electric correlator have already been carried
out [18, 19, 20]. The results look promising, hinting at a large and phenomenologically interest-
ing non-perturbative effect in the diffusion coefficient. However, none of these results contain a
systematic continuum extrapolation. The ultimate goal of our investigation is to perform one, by
making use of the results of secs. 2, 3 as well as of new simulations.
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β Nτ Ns Nconf Nstat r0T

6.872 16 32 139 1000 1.111
6.872 16 64 99 1000 1.111
7.192 24 96 159 1000 1.077
7.544 36 144 278 1000 1.068

Figure 3: Left: Fat links, thin links and electric fields along the timedirection (cf. the text). Right: Run
parameters. The values ofr0T are obtained through an interpolation/extrapolationas illustrated in fig. 2(left).
With the value ofr0Tc from fig. 2(left), we haveT/Tc ≈ 1.43 forNτ = 36.

Our numerical investigations are based on standard latticeQCD techniques. We employ the
Wilson gauge action on fine isotropic lattices with latticesspacings down to∼ 0.015 fm. The
measurement of eq. (4.1) is performed on gauge field configurations generated using 500 sweeps
between subsequent configurations, guaranteeing that the configurations are statistically indepen-
dent. However the correlation function in eq. (4.1) decreases rapidly withτ , and forτ ∼ 1

2T suffers
from a weak signal-to-noise ratio. In order to tackle this problem we use a multi-level update
[21, 22] for the part of the operator that includes the electric field insertions, and link-integration
(“PPR”) [23, 24] for the straight lines between them (the “fat links” in fig. 3). The table in fig. 3
summarizes the situation withNconf labelling the number of statistically independent configurations
andNstat the number of additional “multilevel” updates. As demonstrated in fig. 4, these techniques
suffice to yield a signal.

The lattice sizes of our simulations, corresponding to a temperatureT ∼ 1.43Tc, substantially
exceed those of earlier simulations [18, 19, 20], which hadVmax= 24×643. Due to the increased
number of multilevel updates we focussed on lattices with anaspect ratioNs/Nτ = 4 (cf. the table
in fig. 3), which was the optimal choice given the available computational resources. However,
volume-scaling checks have been performed at the smallest values ofNτ .

After tree-level improvement [8, 22] our measurements yield a correlator denoted byG imp(τ),
which is furthermore multiplied by a perturbative renormalization factorZpert [20]. Normalizing
the resulting correlator to

Gnorm(τT) ≡ π2T4
[

cos2(πτT)

sin4(πτT)
+

1

3sin2(πτT)

]

, (4.2)

the data are displayed in fig. 5. They exhibit a clear enhancement over the next-to-leading order
(NLO) prediction from ref. [25]. A continuum extrapolationremains to be carried out.

5. Outlook

The Euclidean correlator of eq. (4.1) is related to a corresponding spectral functionρE through

GE(τ) =
∫ ∞

0
dω
π ρE(ω)

cosh( 1
2−τT)ω

T
sinh ω

2T
. Once a perturbatively determined short-distance divergence is

subtracted from a continuum-extrapolatedGE(τ), the remainder may be subjected to an analytic
continuation algorithm [2, 3] or a well-motivated model like in refs. [19, 20]. In particular, a “mo-
mentum diffusion coefficient”, often denoted byκ , can be obtained fromκ = limω→0

2TρE(ω)
ω . In
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Figure 4: Left: Error reduction forGE(τ = 12a) in a 36× 1443 box with techniques described in the
text. For 77 statistically independent configurations we determine the non-improved observable (x-axis) and
the fully improved one (y-axis). A dotted horizontal line and a triangle mark the average of the improved
observable. Right: The statistically improved correlatorGE(τ). The inset shows the ratio of non-improved
over improved statistical errors, denoted byRI . An error reduction by a factorRI ∼ O(104) can be achieved.

the non-relativistic limit (i.e. forM ≫ πT, whereM stands for a heavy quark mass) the corre-
sponding “diffusion coefficient” is given byD = 2T2/κ . It will be interesting to see whether pre-
liminary estimates of the diffusion coefficient [19, 20] canbe confirmed after a continuum limit,
and how well the results perform in phenomenological comparisons with LHC heavy ion data (cf.
e.g. ref. [26]). Of course, taking the continuum limit playsan important role in the extraction of
the light-quark diffusion coefficient and electrical conductivity as well [27, 28].

Acknowledgment

This work has been supported in part by the DFG under grant GRK881, by the SNF under
grant 200021-140234, and by the European Union through HadronPhysics3 and ITN STRONGnet
(grant 238353). Simulations were performed using JARA-HPCresources at the RWTH Aachen
(project JARA0039), JUDGE/JUROPA at the JSC Jülich, the OCuLUS Cluster at the Paderborn
Center for Parallel Computing, and the Bielefeld GPU cluster.

References

[1] H.B. Meyer, Eur. Phys. J. A 47 (2011) 86 [1104.3708].

[2] G. Cunibertiet al, Commun. Math. Phys. 216 (2001) 59 [cond-mat/0109175].

[3] Y. Burnier, M. Laine and L. Mether, Eur. Phys. J. C 71 (2011) 1619 [1101.5534].

[4] B. Beinlich, F. Karsch, E. Laermann and A. Peikert, Eur. Phys. J. C 6 (1999) 133 [hep-lat/9707023].

[5] B. Lucini, M. Teper and U. Wenger, JHEP 01 (2004) 061 [hep-lat/0307017].

[6] J. Langelageet al, JHEP 02 (2011) 057 [Erratum-ibid. 07 (2011) 014] [1010.0951].

6



Towards the continuum limit in transport coefficient computations T. Neuhaus

0.0 0.1 0.2 0.3 0.4 0.5
τ  T

0

1

2

3

Z
pe

rt G
im

p / 
G

no
rm

NLO

16 x 32
3

16 x 64
3

24 x 96
3

36 x 144
3

tree-level improved, pert. renorm., T ~ 1.43 T
c

Figure 5: GE at T ∼ 1.43Tc. For the NLO result we have variedTc/ΛMS ∈ (1.11,1.34), cf. fig. 2.

[7] X. Cheng and E.T. Tomboulis, Phys. Rev. D 86 (2012) 074507[1206.3816].

[8] R. Sommer, Nucl. Phys. B 411 (1994) 839 [hep-lat/9310022].

[9] S. Necco, Nucl. Phys. B 683 (2004) 137 [hep-lat/0309017].

[10] M. Lüscher, JHEP 08 (2010) 071 [1006.4518].

[11] M. Guagnelliet al. [ALPHA Collaboration], Nucl. Phys. B 535 (1998) 389 [hep-lat/9806005].

[12] S. Necco and R. Sommer, Nucl. Phys. B 622 (2002) 328 [hep-lat/0108008].

[13] S. Dürr, Z. Fodor, C. Hoelbling and T. Kurth, JHEP 04 (2007) 055 [hep-lat/0612021].

[14] S. Capitani, M. Lüscher, R. Sommer and H. Wittig, Nucl. Phys. B 544 (1999) 669 [hep-lat/9810063].

[15] N. Brambillaet al, Phys. Rev. Lett. 105(2010)212001 [Erratum-ibid. 108(2012)269903] [1006.2066].

[16] J. Casalderrey-Solana and D. Teaney, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199].

[17] S. Caron-Huot, M. Laine and G.D. Moore, JHEP 04 (2009) 053 [0901.1195].

[18] H.B. Meyer, New J. Phys. 13 (2011) 035008 [1012.0234].

[19] D. Banerjee, S. Datta, R. Gavai and P. Majumdar, Phys. Rev. D 85 (2012) 014510 [1109.5738].

[20] A. Francis, O. Kaczmarek, M. Laine and J. Langelage, PoSLATTICE 2011 (2011) 202 [1109.3941].

[21] M. Lüscher and P. Weisz, JHEP 09 (2001) 010 [hep-lat/0108014].

[22] H.B. Meyer, Phys. Rev. D 76 (2007) 101701 [0704.1801].

[23] G. Parisi, R. Petronzio and F. Rapuano, Phys. Lett. B 128(1983) 418.

[24] P. de Forcrand and C. Roiesnel, Phys. Lett. B 151 (1985) 77.

[25] Y. Burnier, M. Laine, J. Langelage and L. Mether, JHEP 08(2010) 094 [1006.0867].

[26] W.M. Albericoet al, Eur. Phys. J. C 73 (2013) 2481 [1305.7421].

[27] H.-T. Dinget al, Phys. Rev. D 83 (2011) 034504 [1012.4963].

[28] Y. Burnier and M. Laine, Eur. Phys. J. C 72 (2012) 1902 [1201.1994].

7


