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We estimate the momentum diffusion coefficient of a heavy quark within a pure SU(3) plasma at a
temperature of about 1.5Tc. Large-scale Monte Carlo simulations on a series of lattices extending up to
1923 × 48 permit us to carry out a continuum extrapolation of the so-called color-electric imaginary-time
correlator. The extrapolated correlator is analyzed with the help of theoretically motivated models for the
corresponding spectral function. Evidence for a nonzero transport coefficient is found and, incorporating
systematic uncertainties reflecting model assumptions, we obtain κ ¼ ð1.8–3.4ÞT3. This implies that the
“drag coefficient,” characterizing the time scale at which heavy quarks adjust to hydrodynamic flow, is
η−1D ¼ ð1.8–3.4ÞðTc=TÞ2ðM=1.5 GeVÞ fm=c, where M is the heavy quark kinetic mass. The results apply
to bottom and, with somewhat larger systematic uncertainties, to charm quarks.
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I. INTRODUCTION

Within linear response theory the rate at which a system
relaxes towards local thermal equilibrium is characterized by
quantities known as transport coefficients. Different trans-
port coefficients parametrize different types of perturbations.
If we focus on a conserved particle number, such as a quark
flavor,1 which is initially distributed unevenly, such as in a
broad jet cone, then the relevant transport coefficient is the
diffusion coefficient. In QCD, there is a separate diffusion
coefficient related to light flavors, and to heavy flavors such
as charm and bottom. A closely related quantity is the
electrical conductivity, which can be expressed as a weighted
sum over the flavor diffusion coefficients.
The determination of transport coefficients related to

strong interactions at temperatures of a few hundred MeV
is an important goal for lattice QCD. It is a challenging
task, given that lattice QCD is formulated in a Euclidean
spacetime whereas transport coefficients are real-time quan-
tities (for a review, see Ref. [1]). Nevertheless, motivated by
the ongoing heavy ion collision program, large-scale efforts
have been undertaken. For example, for the light-quark
contribution to electrical conductivity, recent works can be
found in Refs. [2–7].
The focus of the present study is the diffusion coefficient

associated with heavy quarks. It has been one of the major

qualitative discoveries of the heavy ion collision program at
RHIC and LHC that charm quarks appear to flow about as
efficiently as light quarks do (see, e.g., Refs. [8–10] and
references therein). That a flow develops is an example of a
relaxation towards local thermal equilibrium. It is then a
theoretical challenge to explain this behavior from the laws
of QCD [11]. A next-to-leading order (NLO) computation
in perturbation theory indicates the presence of a large
correction towards strong interactions [12], and strong
interactions have also been observed in N ¼ 4 super-
Yang-Mills theory [13–16]. Furthermore classical lattice
gauge theory simulations [17] and analyses in the confined
phase [18–22] are consistent with strong interactions, and
various other approaches are being pursued in the same
vein [23–29] (for a review, see Ref. [30]). Heavy quark
diffusion also happens to pose an ideal ground for more
general theoretical investigations of nonequilibrium
thermodynamics [31]. In any case, ultimately the problem
needs to be addressed with lattice simulations.
ForM ≫ πT, whereM is the heavy quark “kinetic mass,”

the lattice determination of the heavy quark diffusion
coefficient can be reduced to a purely gluonic measurement
[32]. Here we report the final results of a multiyear study of
the relevant observable in the deconfined phase of pure
SU(3) gauge theory. It has been demonstrated a while ago
that, with advanced numerical methods, a signal can be
obtained at a fixed lattice spacing [33–35]. However the
issues of renormalization, taking the continuum limit, and
analytic continuation had not been brought into conclusion.
Even though further improvements are needed and can be

*Deceased.
1Weak interactions play no role within the lifetime ≲20 fm=c

of a fireball generated in a heavy ion collision.
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foreseen on all of these fronts, the purpose of the current
paper is to present an analysis which offers a “minimal”
practical answer to the main open points.
The plan of this paper is the following. After intro-

ducing the observable and reviewing the techniques that
have been used for its determination and the data sets that
have been collected (Sec. II), we carry out a continuum
extrapolation in Sec. III. The simple structure of the
associated spectral function, as revealed by previous
theoretical works, allows us to attack the difficult problem
of analytic continuation through tightly constrained mod-
els, as well as a variant of the so-called Backus-Gilbert
method (Sec. IV). Our final results and some future
prospects are presented in Sec. V.

II. MEASUREMENTS

Using heavy quark effective theory, the force felt by a
heavy quark as it propagates through a gluon plasma
can be related to a “color-electric correlator” [32] (cf. also
Ref. [15]),

GEðτÞ≡ −
1

3

X3
i¼1

hReTr½Uðβ; τÞgEiðτ; 0ÞUðτ; 0ÞgEið0; 0Þ�i
hReTr½Uðβ; 0Þ�i ;

β≡ 1

T
; ð2:1Þ

where gEi denotes the color-electric field, T the temper-
ature, and Uðτ2; τ1Þ a Wilson line in the Euclidean time
direction. The discretization of this correlator is not unique;
we employ the proposal of Ref. [32], illustrated in Fig. 1.
We have measured the discretized correlator in quenched

lattice QCD, employing the standard Wilson gauge action,
at a temperature corresponding to about 1.5Tc (the param-
eters of the simulations are shown in Table I). In order to
obtain a signal for our observable, advanced statistical error
reduction techniques are required. As has been discussed
in more detail in Refs. [34,36], we have employed 1000
additional multilevel updates [37,38] for the electric field
insertions, and link integration [39,40] for the straight lines
between them. Moreover, in order to reduce discretization
effects, the imaginary-time separations are tree-level
improved [34] in analogy with the procedure previously
used in other contexts [38,41].

The resulting correlators are illustrated in Fig. 2 (left).
For better visibility, the correlators have been normalized to
(cf. Ref. [32])

GnormðτÞ≡ π2T4

�
cos2ðπτTÞ
sin4ðπτTÞ þ

1

3sin2ðπτTÞ
�
; ð2:2Þ

which diverges as 1=ðπ2τ4Þ at τ ≪ β. The correlators have
also been multiplied by a renormalization factor as will
be explained in Sec. III. As discussed in more detail in
Ref. [34], volume dependence lies below statistical uncer-
tainties in our measurements. In the following, we therefore
consider a fixed spatial extent in units of the temper-
ature, Ls ¼ 4=T.

III. CONTINUUM EXTRAPOLATION

Given the lattice data at tree-level improved distances,
we carry out an extrapolation to the continuum limit. For
this the lattice-measured correlator needs to be multiplied
by a renormalization factor:

GE;contðτÞ≡ ZEGE;lattðτÞ: ð3:1Þ

A one-loop perturbative computation yields [45]

ZE;pert ¼ 1þ 0.079 ×
6

β0
þO

�
0.079 ×

6

β0

�
2

; ð3:2Þ

where β0 ≡ 6=g20 is the coupling of the plaquette term in the
Wilson action (cf. Table I). Ultimately renormalization
should be carried out nonperturbatively; however, the small
coefficient of the one-loop term in Eq. (3.2) suggests that
perturbative renormalization should yield a reasonable
approximation.
Measured results at four or five different values of Nτ

(depending on τT; cf. Fig. 2) are interpolated to the values of
τT that are shown in Table II. At fixed τT we extrapolate the
correlator in a2 to the continuum limit. The procedure is
illustrated in Fig. 2 (right) for selected values of τT. The
resulting continuum limit is shown in Fig. 3 (left), and the
results are tabulated in Table II. The results and errors of
continuum-extrapolated correlation functions were obtained
from a combined jackknife analysis. A covariance matrix
for the continuum correlator was also estimated within this
analysis (however the errors are strongly correlated even at
large τ separations; the covariance matrix has very small
eigenvalues and oscillatory eigenvectors, and therefore its
inverse is of limited practical use in fitting).

IV. MODELING THE SPECTRAL FUNCTION

Given the data for the imaginary-time correlator, the next
task is to constrain the corresponding spectral function. The
relation of a spectral function ρEðωÞ to the corresponding
imaginary-time correlator GEðτÞ reads

FIG. 1. One possible discretization of Eq. (2.1) [32]. Different
techniques have been used for improving on the statistical signal
originating from the links denoted with thick lines, and from
the electric field insertions delineated with the vertical lines
(cf. the text).
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GEðτÞ ¼
Z

∞

0

dω
π

ρEðωÞ
cosh½ωðβ

2
− τÞ�

sinh½ωβ
2
� : ð4:1Þ

Even though an inversion of this relation is possible in
principle [46] (after the subtraction of short-distance
singularities [47]), the problem is ill posed in practice:
large variations of ρE may lead to small changes of GE.
Therefore, it is important to constrain the allowed form of
ρE from general considerations. Here we do this by fixing
the functional form of ρE at small (ω ≪ T) and large
frequencies (ω ≫ T). Subsequently theoretically motivated
interpolations between the two limits are proposed. We
consider the spatial volume to be infinite and assume ρE to
be a smooth function of ω, as is generally the case in an
interacting thermal system.

A. IR and UV asymptotics

In the infrared (IR) regime (ω ≪ T), the heavy quark
momentum diffusion coefficient can be defined as [32]

κ ≡ lim
ω→0

2TρEðωÞ
ω

: ð4:2Þ

The approach to this limit appears to be smooth: resummed
perturbative computations [32] and numerical simulations
within classical lattice gauge theory [17], as well as strong-
coupling computations in analogous theories [15,48],
suggest that ρE has no transport peak but is rather a
monotonically increasing function. Therefore, we define
the infrared asymptotics through the simplest form con-
sistent with Eq. (4.2):

ϕIRðωÞ≡ κω

2T
: ð4:3Þ

Consider then the ultraviolet (UV) regime (ω ≫ T).
Thanks to asymptotic freedom, the UV behavior of the
spectral function can be computed in perturbation theory.
Denoting by g2 the QCD gauge coupling renormalized in
the MS scheme, and as ≡ αs=π ≡ g2=ð4π2Þ, the result has
the structure

FIG. 2 (color online). Left: Lattice data after perturbative renormalization and the use of tree-level improved distances. Right:
Illustrations of continuum extrapolations at selected values of τT (our final errors are based on a jackknife analysis and differ somewhat
from those shown here).

TABLE I. The lattices included in the current analysis. Conversions to units of t0 are based on Ref. [42] for the
improved Wilson discretization (“imp”); on Refs. [42,43] for the clover discretization (“clov”) of the observable
defining t0 [44]; and on Ref. [42] for r0 [41]. Note however that the clover case is not well represented by our ansatz
[42]: χ2=d:o:f: ≈ 42. Conversions to Tc are based on Ref. [42].

β0 N3
s × Nτ Confs T

ffiffiffiffi
t0

p ðimpÞ T=TcjðimpÞ
t0 T

ffiffiffiffi
t0

p ðclovÞ T=TcjðclovÞt0 Tr0 T=Tcjr0
6.872 643 × 16 172 0.3770 1.52 0.3805 1.53 1.116 1.50
7.035 803 × 20 180 0.3693 1.48 0.3739 1.50 1.086 1.46
7.192 963 × 24 160 0.3728 1.50 0.3790 1.52 1.089 1.46
7.544 1443 × 36 693 0.3791 1.52 0.3896 1.57 1.089 1.46
7.793 1923 × 48 223 0.3816 1.53 0.3955 1.59 1.084 1.45
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ρEðωÞ ¼ω≫T ½ρEðωÞ�T¼0 þO
�
g4T4

ω

�
: ð4:4Þ

The leading thermal correction is consistent with the
pattern expected from the operator product expansion [49]

(for Nf ¼ 0 the coefficient of this correction is negative
[50]). The vacuum part has the form

½ρEðωÞ�T¼0 ¼
g2CFω

3

6π
½r10 þ ðr20 þ r21lÞas

þ ðr30 þ r31lþ r32l2Þa2s þOða3sÞ�; ð4:5Þ

where CF ≡ ðN2
c − 1Þ=ð2NcÞ ¼ 4=3 and l≡ lnðμ̄2=ω2Þ,

with μ̄ denoting the renormalization scale. The three first
coefficients read [50]

r10 ¼ 1; ð4:6Þ

r20 ¼ Nc

�
149

36
−
11 ln 2

6
−
2π2

3

�
− Nf

�
5

9
−
ln 2
3

�
; ð4:7Þ

r21 ¼
11Nc − 2Nf

12
; ð4:8Þ

where Nf denotes the number of light dynamical quarks
(Nf ¼ 0 in our study). The coefficient r30 and higher-order
terms are presently unknown. However, the general structure
of Eq. (4.5), together with the knowledge that ρE requires no
renormalization in dimensional regularization [32], is suffi-
cient for determining the asymptotics of ρE.
Indeed, suppose that we choose the renormalization scale

as μ̄ ¼ ω for ω ≫ ΛMS. Then l ¼ 0, as ∼ ln−1ðω=ΛMSÞ,
and we get

½ρEðωÞ�T¼0 ¼ω≫T
ϕðaÞ

UV ðωÞ
�
1þO

�
1

lnðω=ΛMSÞ
��

; ð4:9Þ

FIG. 3 (color online). Left: Continuum-extrapolated lattice data (cf. Table II) and examples of model results, as described in the text.
The results have been normalized to Eq. (2.2). Right: The differences between the data and the models. For better visibility, the data
points corresponding to models 1αa and 3a have been displaced slightly.

TABLE II. The continuum-extrapolated correlator, normalized
to Eq. (2.2). The errors are statistical and result from linear
extrapolations in 1=N2

τ to the continuum limit (cf. the text).

τT ZpertGlatt

Gnorm

4=48 1.8727(43)
5=48 2.0044(31)
6=48 2.1157(25)
7=48 2.2133(31)
8=48 2.3001(44)
9=48 2.3793(56)
10=48 2.4548(65)
11=48 2.5300(72)
12=48 2.6070(79)
13=48 2.6865(86)
14=48 2.7686(92)
15=48 2.8529(96)
16=48 2.9391(98)
17=48 3.0260(101)
18=48 3.1124(107)
19=48 3.1962(117)
20=48 3.2745(130)
21=48 3.3441(145)
22=48 3.4005(161)
23=48 3.4390(176)
24=48 3.4538(190)
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where we have defined

ϕðaÞ
UV ðωÞ≡ g2ðμ̄ωÞCFω

3

6π
; μ̄ω ≡maxðω; πTÞ: ð4:10Þ

Formally, we can reduce the correction to be of quadratic
rather than linear order in ln−1ðω=ΛMSÞ by including r20 in
the asymptotics, so let

ϕðbÞ
UV ðωÞ≡ ϕðaÞ

UV ðωÞ½1þ ðr20 þ r21lÞasðμ̄ωÞ�: ð4:11Þ

However, since the convergence of an expansion proceed-
ing in inverse logarithms could be slow, and since our
knowledge of ω=ΛMS ¼ ðω=TÞ × ðT=ΛMSÞ is imperfect
due to uncertainties in T=ΛMS [42], we treat Eqs. (4.10)
and (4.11) on an equal footing in the following. For
evaluating g2ðμ̄ωÞ and asðμ̄ωÞ, we have used four-loop
running [51].

B. Interpolations

Equations (4.3) and (4.10) determine the limiting behav-
iors of the spectral function. For ω ≪ T, given the flatness
observed in nonperturbative simulations [17], we expect
corrections to ϕIR to be given by a convergent power series
in ω. For ω ≫ T the corrections are suppressed by inverse
logarithms of ω=T, and it is important to account for
these corrections. In order to incorporate the different
types of corrections in the two regimes, we map the interval
ω ∈ ð0;∞Þ to the interval (0,1) by introducing

x≡ ln

�
1þ ω

πT

�
∈ ð0;∞Þ; y≡ x

1þ x
∈ ð0; 1Þ:

ð4:12Þ
For small y we have

y ≈ x ≈
ω

πT
; ω ≪ T; ð4:13Þ

whereas around the other end we get

1 − y ≈
1

x
≈

1

ln½ω=ðπTÞ� ; ω ≫ T: ð4:14Þ

So, we can capture corrections to the asymptotics by a
function in y which vanishes at y ¼ 0 and y ¼ 1 and is a
polynomial or a power series in between. A convenient
choice is to employ trigonometric functions:

eðαÞn ðyÞ≡ sinðπnyÞ: ð4:15Þ
Another possibility, in principle preferable if we know that
corrections are only quadratic in the variables in Eqs. (4.13)
and (4.14) [cf. the discussion preceding Eq. (4.11)], is

eðβÞn ðyÞ≡ sinðπyÞ sinðπnyÞ: ð4:16Þ

With these bases we are led to define general models
(μ ∈ fα; βg, i ∈ fa; bg):

model 1∶ ρð1μiÞE ðωÞ≡
�
1þ

Xnmax

n¼1

cne
ðμÞ
n ðyÞ

�

× ½ϕIRðωÞ þ ϕðiÞ
UVðωÞ�; ð4:17Þ

model 2∶ ρð2μiÞE ðωÞ≡
�
1þ

Xnmax

n¼1

cne
ðμÞ
n ðyÞ

�

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ϕIRðωÞ�2 þ ½ϕðiÞ

UVðωÞ�2
q

: ð4:18Þ

The difference between these interpolations is that the latter
imposes a more rapid crossover from the IR to the UV
asymptotics; for instance, for large ω we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2

IR þ ϕ2
UV

p
≈

ϕUV þ ϕ2
IR

2ϕUV
∼ ω3 þ T4=ω in qualitative accordance with the

functional form expected from Eq. (4.4).2 Finally, we also
consider a simple two-parameter ansatz separating the IR
and UV regimes completely:

model 3∶ ρð3iÞE ðωÞ≡max½ϕIRðωÞ; cϕðiÞ
UVðωÞ�; ð4:19Þ

where c is treated as a free parameter, reflecting uncertainties
in the renormalization factor in Eq. (3.2) [in practice we find
c ¼ 1.05ð1Þ from the fit for i ¼ a].

C. Fitting strategy

The inversion of Eq. (4.1) represents an ill-posed problem,
so it should not come as a surprise that it is, in general, not
possible to find a “stable” fit describing the data. In other
words, the χ2 function may possess an extremely shallow
minimum, or multiple minima. Empirically we find, how-
ever, that these ambiguities are largely related to the UV
behavior of the spectral function. With some further input,
the UV behavior can be stabilized, yet the IR coefficient κ in
which we are mostly interested remains fairly unaffected.
Concretely, we have implemented two strategies for the

fitting, which incorporate an implicit or explicit stabiliza-
tion of the UV contribution. After defining3

χ2 ≡X
τi

�
GmeasðτiÞ − GmodelðτiÞ

δGmeasðτiÞ
�
2

; ð4:20Þ

2Note that, for nmax → ∞, such a construction can be viewed
as a general parametrization of an arbitrary spectral function.
We call our parametrizations “models” because the problems
discussed in Sec. IV C necessitate keeping nmax relatively small
and stabilizing the subsequent fits through additional input.

3We have also carried out tests with the covariance matrix, but
in its full form this does not yield sensible results as alluded to
above. If a sufficient infrared cutoff is imposed on the smallest
eigenvalues, the results are consistent within errors with the
procedure described here.
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where δGmeas denote the errors from Table II, the following
alternatives are considered:

(i) In the first strategy, we search for a minimum of χ2

for a result based on Eq. (4.1), taking a jackknife
sample as the measured result. The search is per-
formed using the algorithm described in Ref. [52],
taking κ=T3 ¼ 1.0, cn ¼ 0.0 as a starting point. The
search is stopped after 200 iterations, by which time
an excellent representation of the data has in general
been reached (with χ2=d:o:f: ∼ 0.3–0.5 for a typical
sample from the jackknife ensemble), with coeffi-
cients jcnj≲ 0.2.

(ii) In the second strategy, we stabilize the fit by
imposing the constraint

ρðnμiÞE ðωmaxÞ≡ ϕðiÞ
UVðωmaxÞ; ð4:21Þ

where we choose ωmax ≡ 1000T. This constraint
imposes a relation between κ and cn, so that there
are only nmax free parameters. We find that with this
constraint a unique minimum of χ2 can always be
found, with χ2=d:o:f: ∼ 0.2–0.6. The practical search
was performed with the routine described in Ref. [53].
Because of the artificial constraint at large ω=T, the
fit is carried out only to distances τT ≥ 6=48.

In the following we describe results from both procedures,
demonstrating that they yield similar results for κ, particu-
larly for our preferred “model 2” [cf. Eq. (4.18)].
In the case of the two-parameter model 3 defined in

Eq. (4.19)), a global minimum of χ2 is readily found
without further input. The price to pay for this stability is
that the model does not describe the data particularly well,

having χ2=d:o:f: ≈ 17.5 for ϕðaÞ
UV (we do not show results for

ϕðbÞ
UV for which χ2=d:o:f: ≈ 68).
In addition to these fits, we have also made use of a

variant of the Backus-Gilbert method (BGM) [54,55] (see
Refs. [56,57] for previous applications in lattice QCD). The
goal of this method is not to reconstruct the spectral
function itself but rather an averaged version thereof.
With very precise data, the averaging kernel could be
made optimally narrow in a certain sense. In practice, the
finite precision of the data necessitates a regularization of
an ill-defined matrix inversion; this is characterized by a
parameter λ for which we use λ ¼ 10−4 rather than the
theoretically optimal λ ¼ 1 (cf. Ref. [57]). As a conse-
quence, our estimate of the infrared limit of the spectral
function amounts to a weighted average over the range
0 ≤ ω≲ 10T. Fortunately, if there is little structure in this
range, the result should be reasonable. Moreover it is
possible to rescale the kernel in order to further remove
known structures; we insert ρEðωÞ ¼ ½ρEðωÞ=ϕðωÞ�ϕðωÞ
in Eq. (4.1) with ϕðωÞ≡ ðωβÞ3= tanh2ðωβ=4Þ and sub-
sequently include ϕ in the kernel. To keep the matrix size
manageable, only τ=β ¼ ð4–21Þ=48 were used for this
analysis. If the final result for the averaged ρEðωÞ is inserted

back into Eq. (4.1), it yields a representation of the original
data with χ2=d:o:f: ≈ 41.
We end by remarking that, apart from these novel

approaches, we have also applied the standard maximum
entropy method (MEM) to our problem. MEM requires the
specification of a default model as input. If we take as the
default model our model 1 or 2, which yield a Euclidean
correlator agreeing with lattice data everywhere (within
statistical errors), then MEM reproduces the default model
as its output (within statistical errors). In other words,
MEM does not help to constrain the result beyond our
analysis.

D. Estimation of κ

We now turn to estimating κ. In Sec. IV B we have
introduced a large class of fit functions: eight separate
models ρðnμiÞE , n ∈ f1; 2g, μ ∈ fα; βg, i ∈ fa; bg, each of
which depends on a parameter nmax. In addition we have
introduced two fitting strategies (cf. Sec. IV C). In the
following, we choose nmax ¼ 4, 5 and demonstrate that, for
a given model, both strategies yield similar results within
error bars. (We have also used nmax ¼ 3 and nmax ¼ 6;
these yield nothing qualitatively new.) The agreement is
more significant for our preferred model 2. The spread
between the models is interpreted as an indication of the
systematic uncertainty of our determination. Model 3a
and the BGM approach are included as further cross-
checks; in the BGM case the spread of results originating

10
-1

10
0

10
1

10
2

ω / T

10
-1

10
0

10
1

10
2

10
3

ρ E
 / 

(  ω
 T

2  )

φ
UV

(a)

model 1αa
model 2αa
model 3a
BGM

T  1.5 T
c
, T

c
 = 1.24 Λ

MS
_

FIG. 4 (color online). Examples of model spectral functions,
compared with ϕðaÞ

UV from Eq. (4.10). In the BGM case the curve
shown has been obtained by replacing the full covariance matrix
with a diagonal one possessing the errors shown in Table II, but
we have obtained BGM results with full and IR-regularized
covariance matrices as well; they are included in the average
shown in Fig. 5.
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from different versions of covariance matrices (cf. caption
of Fig. 4) is included in the error shown.
The fits are carried out to samples from a jackknife

ensemble, and the ensemble is used for determining stat-
istical errors. Results from the different models are illustrated
in Figs. 3–5 [the fits in Figs. 3 and 4 are based on strategy
(i)]. Given that model 2 yields more stable results within the
other variations, and that it is theoretically better justified
than model 1 [cf. the discussion below Eq. (4.18))], we make
use of it in the following. Based on the central values from
Fig. 5 for models 2, 3a and BGM we estimate

κ=T3 ¼ 1.8…3.4: ð4:22Þ
This result is illustrated in Fig. 5 with a gray band. Given
that the result is dominated by systematic uncertainties
which may be asymmetric but are essentially impossible
to estimate, we refrain from citing a central value here.4

V. CONCLUSIONS

The purpose of this paper has been to estimate the heavy
quark momentum diffusion coefficient, defined through
Eqs. (2.1), (4.1) and (4.2). Compared with previous works
[33–35], we have carried out a continuum extrapolation of
the imaginary-time correlator (cf. Sec. III) and discussed

the systematics related to estimating the corresponding
spectral function (cf. Sec. IV). The final result of our
analysis is given in Eq. (4.22). It is remarkable that,
despite the ill-posed nature of analytic continuation, our
novel approach permits us to obtain relatively stable
results and to strongly constrain the order of magnitude
of the heavy quark momentum diffusion coefficient in the
continuum limit.
In the nonrelativistic limit (i.e. for a heavy quark mass

M ≫ πT) κ is related to the diffusion coefficient D as
D ¼ 2T2=κ, and to the drag coefficient as ηD ¼ κ=ð2MTÞ,
where M is a heavy quark kinetic mass [32]. The drag
coefficient can also be interpreted as the kinetic equilibra-
tion time scale associated with heavy quarks: τkin ¼ η−1D .
For a conversion to physical units, we use r0Tc ¼
0.7457ð45Þ [42] and r0 ¼ 0.47ð1Þ fm [58]. With these
conversions, our result κ=T3 ¼ 1.8–3.4 yields an estimate
for the time scale associated with the kinetic equilibration
of heavy quarks,

τkin ¼
1

ηD
¼ ð1.8…3.4Þ

�
Tc

T

�
2
�

M
1.5 GeV

�
fm=c: ð5:1Þ

Close to Tc, charm quark kinetic equilibration appears
therefore to be almost as fast as that of light partons, for
which a time scale ∼1 fm=c is generally considered
appropriate. For the diffusion coefficient we obtain

DT ¼ 0.59…1.1: ð5:2Þ

This can be compared with the values DT ≳ 0.13 obtained
for light quarks in quenched QCD in the continuum limit
[4,5]. It would be “natural” for the D of heavy quarks to be
of the same order of magnitude but somewhat larger than
that of light quarks, given that heavy quarks should feel
slightly weaker interactions.
It is also interesting to compare our result for κ with an

NLO perturbative computation [12]. That result is of the
form κ=T3 ¼ α2s ðc1 þ c2α

1=2
s Þ, where c1, c2 are coefficients

given in Ref. [12] (c1 involves a logarithmic dependence on
αs). In the absence of corrections of relative order αs, it is
not possible to estimate the renormalization scale at which
αs should be evaluated. Nevertheless, the result shown in
Fig. 3 of Ref. [12] agrees with our Eq. (4.22) if we set
αs ¼ 0.20–0.26, which is in full accordance with the range
generally used in heavy ion collision phenomenology.
Many possible directions can be envisaged for future

investigations. Improved statistical precision is crucial for
moving towards model-independent analytic continuation
[47]. Other temperatures than just T ∼ 1.5Tc should be
considered. The determination of the renormalization factor
ZE in Eq. (3.1) should be promoted to the nonperturbative
level. It would be important to understand whether the
heavy-mass limit is justified for charm quarks (or only for

0 1 2 3 4 5

κ / T
3

1αa

1αb

1βa

1βb

2αa

2αb

2βa

2βb

3a

BGM
m

od
el

strategy (i)

strategy (ii)

T ~ 1.5 T
c

FIG. 5 (color online). Fit results based on different models
(cf. Sec. IV B) and different fitting strategies (cf. Sec. IV C). In
each case, the lower data point corresponds to nmax ¼ 4, the
higher to nmax ¼ 5. For model 3a [cf. Eq. [24]] and BGM
(cf. Sec. IV C) systematic errors are larger than those shown.
The gray band illustrates our final estimate, given in Eq. (4.22)
and based on models 2, 3a and BGM.

4It is remarkable that our result is consistent with previous ones
obtained at a single lattice spacing and with very rough modeling
of the spectral shape [34,35]. However, the uncertainties related
to the continuum extrapolation and to analytic continuation are
now much closer to being under control.
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bottom quarks); this can in principle be studied by using the
full relativistic formulation for measuring current-current
correlation functions [59,60], even though then the structure
of the spectral function is more complicated and analytic
continuation is even more difficult to get under reasonable
control. Finally, estimating effects from dynamical quarks is
important for phenomenological applications.
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