535 research outputs found
Calibration of the LOFAR low-band antennas using the Galaxy and a model of the signal chain
The LOw-Frequency ARray (LOFAR) is used to make precise measurements of radio
emission from extensive air showers, yielding information about the primary
cosmic ray. Interpreting the measured data requires an absolute and
frequency-dependent calibration of the LOFAR system response. This is
particularly important for spectral analyses, because the shape of the detected
signal holds information about the shower development. We revisit the
calibration of the LOFAR antennas in the range of 30 - 80 MHz. Using the
Galactic emission and a detailed model of the LOFAR signal chain, we find an
improved calibration that provides an absolute energy scale and allows for the
study of frequency-dependent features in measured signals. With the new
calibration, systematic uncertainties of 13% are reached, and comparisons of
the spectral shape of calibrated data with simulations show promising
agreement.Comment: 23 pages, 10 figure
Realtime processing of LOFAR data for the detection of nano-second pulses from the Moon
The low flux of the ultra-high energy cosmic rays (UHECR) at the highest
energies provides a challenge to answer the long standing question about their
origin and nature. Even lower fluxes of neutrinos with energies above
eV are predicted in certain Grand-Unifying-Theories (GUTs) and e.g.\ models for
super-heavy dark matter (SHDM). The significant increase in detector volume
required to detect these particles can be achieved by searching for the
nano-second radio pulses that are emitted when a particle interacts in Earth's
moon with current and future radio telescopes.
In this contribution we present the design of an online analysis and trigger
pipeline for the detection of nano-second pulses with the LOFAR radio
telescope. The most important steps of the processing pipeline are digital
focusing of the antennas towards the Moon, correction of the signal for
ionospheric dispersion, and synthesis of the time-domain signal from the
polyphased-filtered signal in frequency domain. The implementation of the
pipeline on a GPU/CPU cluster will be discussed together with the computing
performance of the prototype.Comment: Proceedings of the 22nd International Conference on Computing in High
Energy and Nuclear Physics (CHEP2016), US
Cosmic Ray Physics with the LOFAR Radio Telescope
The LOFAR radio telescope is able to measure the radio emission from cosmic
ray induced air showers with hundreds of individual antennas. This allows for
precision testing of the emission mechanisms for the radio signal as well as
determination of the depth of shower maximum , the shower observable
most sensitive to the mass of the primary cosmic ray, to better than 20
g/cm. With a densely instrumented circular area of roughly 320 m, LOFAR
is targeting for cosmic ray astrophysics in the energy range -
eV. In this contribution we give an overview of the status, recent
results, and future plans of cosmic ray detection with the LOFAR radio
telescope.Comment: Proceedings of the 26th Extended European Cosmic Ray Symposium
(ECRS), Barnaul/Belokurikha, 201
Measurement of the circular polarization in radio emission from extensive air showers confirms emission mechanisms
We report here on a novel analysis of the complete set of four Stokes
parameters that uniquely determine the linear and/or circular polarization of
the radio signal for an extensive air shower. The observed dependency of the
circular polarization on azimuth angle and distance to the shower axis is a
clear signature of the interfering contributions from two different radiation
mechanisms, a main contribution due to a geomagnetically-induced transverse
current and a secondary component due to the build-up of excess charge at the
shower front. The data, as measured at LOFAR, agree very well with a
calculation from first principles. This opens the possibility to use circular
polarization as an investigative tool in the analysis of air shower structure,
such as for the determination of atmospheric electric fields.Comment: Accepted for publication in Phys. Rev.
A Development Environment for Visual Physics Analysis
The Visual Physics Analysis (VISPA) project integrates different aspects of
physics analyses into a graphical development environment. It addresses the
typical development cycle of (re-)designing, executing and verifying an
analysis. The project provides an extendable plug-in mechanism and includes
plug-ins for designing the analysis flow, for running the analysis on batch
systems, and for browsing the data content. The corresponding plug-ins are
based on an object-oriented toolkit for modular data analysis. We introduce the
main concepts of the project, describe the technical realization and
demonstrate the functionality in example applications
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival
directions of cosmic rays detected at the Pierre Auger Observatory with local
zenith angles up to and energies in excess of 4 EeV ( eV). This search is conducted by measuring the angular power spectrum
and performing a needlet wavelet analysis in two independent energy ranges.
Both analyses are complementary since the angular power spectrum achieves a
better performance in identifying large-scale patterns while the needlet
wavelet analysis, considering the parameters used in this work, presents a
higher efficiency in detecting smaller-scale anisotropies, potentially
providing directional information on any observed anisotropies. No deviation
from isotropy is observed on any angular scale in the energy range between 4
and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no
other deviation from isotropy is observed for moments beyond the dipole one.
The corresponding -values obtained after accounting for searches blindly
performed at several angular scales, are in the case of
the angular power spectrum, and in the case of the needlet
analysis. While these results are consistent with previous reports making use
of the same data set, they provide extensions of the previous works through the
thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory
On September 14, 2015 the Advanced LIGO detectors observed their first
gravitational-wave (GW) transient GW150914. This was followed by a second GW
event observed on December 26, 2015. Both events were inferred to have arisen
from the merger of black holes in binary systems. Such a system may emit
neutrinos if there are magnetic fields and disk debris remaining from the
formation of the two black holes. With the surface detector array of the Pierre
Auger Observatory we can search for neutrinos with energy above 100 PeV from
point-like sources across the sky with equatorial declination from about -65
deg. to +60 deg., and in particular from a fraction of the 90% confidence-level
(CL) inferred positions in the sky of GW150914 and GW151226. A targeted search
for highly-inclined extensive air showers, produced either by interactions of
downward-going neutrinos of all flavors in the atmosphere or by the decays of
tau leptons originating from tau-neutrino interactions in the Earth's crust
(Earth-skimming neutrinos), yielded no candidates in the Auger data collected
within s around or 1 day after the coordinated universal time (UTC)
of GW150914 and GW151226, as well as in the same search periods relative to the
UTC time of the GW candidate event LVT151012. From the non-observation we
constrain the amount of energy radiated in ultrahigh-energy neutrinos from such
remarkable events.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Search for Cosmic Particles with the Moon and LOFAR
The low flux of the ultra-high energy cosmic rays (UHECR) at the highest
energies provides a challenge to answer the long standing question about their
origin and nature. A significant increase in the number of detected UHECR is
expected to be achieved by employing Earth's moon as detector, and search for
short radio pulses that are emitted when a particle interacts in the lunar
rock. Observation of these short pulses with current and future radio
telescopes also allows to search for the even lower fluxes of neutrinos with
energies above eV, that are predicted in certain
Grand-Unifying-Theories (GUTs), and e.g. models for super-heavy dark matter
(SHDM). In this contribution we present the initial design for such a search
with the LOFAR radio telescope.Comment: To be published in the Proceedings of the ARENA2016 conference,
Groningen, The Netherland
- …
