1,101 research outputs found

    Event-based visual guidance inspired by honeybees in a 3D tapered tunnel

    No full text
    International audience— In view of neuro-ethological findings on honeybees and our previously developed vision-based autopilot, in-silico experiments were performed in which a " simulated bee " was make to travel along a doubly tapering tunnel including for the first time event-based controllers. The " simulated bee " was equipped with: • a minimalistic compound eye comprising 10 local motion sensors measuring the optic flow magnitude, • two optic flow regulators updating the control signals whenever specific optic flow criteria changed, • and three event-based controllers taking into account the error signals, each one in charge of its own translational dynamics. A MORSE/Blender based simulator-engine delivered what each of 20 " simulated photoreceptors " saw in the tunnel lined with high resolution natural 2D images. The " simulated bee " managed to travel safely along the doubly tapering tunnel without requiring any speed or distance measurements, using only a Gibsonian point of view, by: • concomitantly adjusting the side thrust, vertical lift and forward thrust whenever a change was detected on the optic flow-based signal errors, • avoiding collisions with the surface of the doubly tapering tunnel and decreasing or increasing its speed, depending on the clutter rate perceived by motion sensors

    Retreating to nature : rethinking 'therapeutic landscapes'

    Get PDF
    There is a long history of removing oneself from ‘society’ in order to recuperate or repair. This paper considers a yoga and massage retreat in Southern Spain, and what opportunities this retreat experience might offer for recuperation and the creation of healthy bodies. The paper positions ‘nature’ as an active participant, and as ‘enrolled’ in the experiences of the retreat as a ‘therapeutic landscape’, and questions how and what particular aspects of yoga practice (in intimate relation with place) give rise to therapeutic experiences

    PHOSPHORUS-STARVATION TOLERANCE 1 (OsPSTOL1) is prevalent in upland rice and enhances root growth and hastens low phosphate signaling in wheat

    Get PDF
    PHOSPHORUS-STARVATION TOLERANCE 1 (OsPSTOL1) is a variably present gene that benefits crown root growth and phosphorus (P) sufficiency in rice (Oryza sativa). To explore the ecophysiological importance of this gene, we performed a biogeographic survey of landraces and cultivars, confirming that functional OsPSTOL1 alleles prevail in low nutrient and drought-prone rainfed ecosystems, whereas loss-of-function and absence haplotypes predominate in control-irrigated paddy varieties of east Asia. An evolutionary history analysis of OsPSTOL1 and related genes in cereal, determined it and other genes are kinase-only domain derivatives of membrane-associated receptor like kinases. Finally, to evaluate the potential value of this kinase of unknown function in another Gramineae, wheat (Triticum aestivum) lines overexpressing OsPSTOL1 were evaluated under field and controlled low P conditions. OsPSTOL1 enhances growth, crown root number, and overall root plasticity under low P in wheat. Survey of root and shoot crown transcriptomes at two developmental stages identifies transcription factors that are differentially regulated in OsPSTOL1 wheat that are similarly controlled by the gene in rice. In wheat, OsPSTOL1 alters the timing and amplitude of regulators of root development in dry soils and hastens induction of the core P-starvation response. OsPSTOL1 and related genes may aid more sustainable cultivation of cereal crops

    Fit for purpose? Pattern cutting and seams in wearables development

    Get PDF
    This paper describes how a group of practitioners and researchers are working across disciplines at Nottingham Trent University in the area of Technical Textiles. It introduces strands of ongoing enquiry centred around the development and application of stretch sensors on the body, focusing on how textile and fashion knowledge are being reflexively revealed in the collaborative development of seamful wearable concepts, and on the tensions between design philosophies as revealed by definitions of purpose. We discuss the current research direction of the Aeolia project, which seeks to exploit the literal gaps found in pattern cutting for fitted stretch garments towards experiential forms and potential interactions. Normative goals of fitness for purpose and seamlessness are interrogated and the potential for more integrated design processes, which may at first appear ‘upside down’, is discussed

    Improving tribological properties of cast Al-Si alloys through application of wear-resistant thermal spray coatings

    Get PDF
    Flame Spray Thermal Spray coatings are low-cost, high-wear surface-treatment technologies. However, little has been reported on their potential effects on cast automotive aluminum alloys. The aim of this research was to investigate the tribological properties of as-sprayed NiCrBSi and WC/12Co Flame Spray coatings applied to two cast aluminum alloys: high-copper LM24 (AlSi8Cu3Fe), and low-copper LM25 (AlSi7Mg). Potential interactions between the mechanical properties of the substrate and the deposited coatings were deemed to be significant. Microstructural, microhardness, friction, and wear (pin-on-disk, microabrasion, Taber abrasion, etc.) results are reported, and the performance differences between coatings on the different substrates were noted. The coefficient of friction was reduced from 0.69-0.72 to 0.12-0.35. Wear (pin-on-disk) was reduced by a factor of 103-104, which was related to the high surface roughness of the coatings. Microabrasion wear was dependent on coating hardness and applied load. Taber abrasion results showed a strong dependency on the substrate, coating morphology, and homogeneity

    First hints of new sensors

    Get PDF
    A mechanism by which plants detect and respond to oxygen starvation has been known for some years. Three recent papers suggest that we haven’t been seeing the full picture

    Regulation of markers of synaptic function in mouse models of depression: chronic mild stress and decreased expression of VGLUT1

    Get PDF
    Depression has been linked to failure in synaptic plasticity originating from environmental and/or genetic risk factors. The chronic mild stress (CMS) model regulates the expression of synaptic markers of neurotransmitter function and associated depressive-like behaviour. Moreover, mice heterozygous for the synaptic vesicle protein (SVP) vesicular glutamate transporter 1 (VGLUT1), have been proposed as a genetic model of deficient glutamate function linked to depressive-like behaviour. Here, we aimed to identify, in these two experimental models, mechanisms of failure in synaptic plasticity, common to stress and impaired glutamate function. First, we show that CMS induced a transient decrease of different plasticity markers (VGLUT1, synapsin 1, sinaptophysin, rab3A and activity regulated cytoskeletal protein Arc) but a long-lasting decrease of the brain derived neurotrophic factor (BDNF) as well as depressive-like behaviour. The immediate early gene (IEG) Arc was also downregulated in VGLUT1+/- heterozygous mice. In contrast, an opposite regulation of synapsin 1 was observed. Finally, both models showed a marked increase of cortical Arc response to novelty. Increased Arc response to novelty could be suggested as a molecular mechanism underlying failure to adapt to environmental changes, common to chronic stress and altered glutamate function. Further studies should investigate whether these changes are associated to depressive-like behaviour both in animal models and in depressed patients
    • …
    corecore