970 research outputs found

    Treatment exhaustion of highly active antiretroviral therapy (HAART) among individuals infected with HIV in the United Kingdon: multicentre cohort study

    Get PDF
    Objectives: To investigate whether there is evidence that an increasing proportion of HIV infected patients is starting to experience increases in viral load and decreases in CD4 cell count that are consistent with exhaustion of available treatment options. Design: Multicentre cohort study. Setting: Six large HIV treatment centres in southeast England. Participants: All individuals seen for care between 1 January 1996 and 31 December 2002. Main outcome measures: Exposure to individual antiretroviral drugs and drug classes, CD4 count, plasma HIV RNA burden. Results: Information is available on 16 593 individuals (13 378 (80.6%) male patients, 10 340 (62.3%) infected via homosexual or bisexual sex, 4426 (26.7%) infected via heterosexual sex, median age 34 years). Overall, 10 207 of the 16 593 patients (61.5%) have been exposed to any antiretroviral therapy. This proportion increased from 41.2% of patients under follow up at the end of 1996 to 71.3% of those under follow up in 2002. The median CD4 count and HIV RNA burden of patients under follow up in each year changed from 270 cells/mm3 and 4.34 log10 copies/ml in 1996 to 408 cells/mm3 and 1.89 log10 copies/ml, respectively, in 2002. By 2002, 3060 (38%) of patients who had ever been treated with antiretroviral therapy had experienced all three main classes. Of these, around one quarter had evidence of β€œviral load failure” with all these three classes. Patients with three class failure were more likely to have an HIV RNA burden > 2.7 log10 copies/ml and a CD4 count < 200 cells/mm3. Conclusions: The proportion of individuals with HIV infection in the United Kingdom who have been treated has increased gradually over time. A substantial proportion of these patients seem to be in danger of exhausting their options for antiretroviral treatment. New drugs with low toxicity, which are not associated with cross resistance to existing drugs, are urgently needed for such patients

    A randomised trial of subcutaneous intermittent interleukin-2 without antiretroviral therapy in HIV-infected patients: the UK-Vanguard Study

    Get PDF
    Objective: The objective of the trial was to evaluate in a pilot setting the safety and efficacy of interleukin-2 (IL-2) therapy when used without concomitant antiretroviral therapy as a treatment for HIV infection. Design and Setting: This was a multicentre randomised three-arm trial conducted between September 1998 and March 2001 at three clinical centres in the United Kingdom. Participants: Participants were 36 antiretroviral treatment naive HIV-1-infected patients with baseline CD4 T lymphocyte counts of at least 350 cells/mm(3). Interventions: Participants were randomly assigned to receive IL-2 at 15 million international units (MIU) per day ( 12 participants) or 9 MIU/day ( 12 participants) or no treatment ( 12 participants). IL-2 was administered by twice-daily subcutaneous injections for five consecutive days every 8 wk. Outcome Measures: Primary outcome was the change from baseline CD4 T lymphocyte count at 24 wk. Safety and plasma HIV RNA levels were also monitored every 4 wk through 24 wk. The two IL-2 dose groups were combined for the primary analysis. Results: Area under curve (AUC) for change in the mean CD4 T lymphocyte count through 24 wk was 129 cells/mm(3) for those assigned IL-2 ( both dose groups combined) and 13 cells/mm(3) for control participants (95% CI for difference, 51.3 - 181.2 cells/mm(3); p = 0.0009). Compared to the control group, significant increases in CD4 cell count were observed for both IL-2 dose groups: 104.2/mm(3) ( p = 0.008) and 128.4 cells/mm(3) ( p = 0.002) for the 4.5 and 7.5 MIU dose groups, respectively. There were no significant differences between the IL-2 (0.13 log(10) copies/ ml) and control (0.09 log(10) copies/ml) groups for AUC of change in plasma HIV RNA over the 24-wk period of follow- up ( 95% CI for difference, - 0.17 to 0.26; p = 0.70). Grade 4 and dose-limiting side effects were in keeping with those previously reported for IL-2 therapy. Conclusions: In participants with HIV infection and baseline CD4 T lymphocyte counts of at least 350 cells/mm(3), intermittent subcutaneous IL-2 without concomitant antiretroviral therapy was well tolerated and produced significant increases in CD4 T lymphocyte counts and did not adversely affect plasma HIV RNA levels

    Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors

    Get PDF
    Holobionts are species-specific associations between macro- and microorganisms. On coral reefs, the benthic coverage of coral and algal holobionts varies due to natural and anthropogenic forcings. Different benthic macroorganisms are predicted to have specific microbiomes. In contrast, local environmental factors are predicted to select for specific metabolic pathways in microbes. To reconcile these two predictions, we hypothesized that adaptation of microbiomes to local conditions is facilitated by the horizontal transfer of genes responsible for specific metabolic capabilities. To test this hypothesis, microbial metagenomes were sequenced from 22 coral reefs at 11 Line Islands in the central Pacific that together span a wide range of biogeochemical and anthropogenic influences. Consistent with our hypothesis, the percent cover of major benthic functional groups significantly correlated with particular microbial taxa. Reefs with higher coral cover had a coral microbiome with higher abundances of Alphaproteobacteria (such as Rhodobacterales and Sphingomonadales), whereas microbiomes of algae-dominated reefs had higher abundances of Gammaproteobacteria (such as Alteromonadales, Pseudomonadales, and Vibrionales), Betaproteobacteria, and Bacteriodetes. In contrast to taxa, geography was the strongest predictor of microbial community metabolism. Microbial communities on reefs with higher nutrient availability (e.g., equatorial upwelling zones) were enriched in genes involved in nutrient-related metabolisms (e.g., nitrate and nitrite ammonification, Ton/Tol transport, etc.). On reefs further from the equator, microbes had more genes encoding chlorophyll biosynthesis and photosystems I/II. These results support the hypothesis that core microbiomes are determined by holobiont macroorganisms, and that those core taxa adapt to local conditions by selecting for advantageous metabolic genes

    Trim17, novel E3 ubiquitin-ligase, initiates neuronal apoptosis

    Get PDF
    Accumulating data indicate that the ubiquitin-proteasome system controls apoptosis by regulating the level and the function of key regulatory proteins. In this study, we identified Trim17, a member of the TRIM/RBCC protein family, as one of the critical E3 ubiquitin ligases involved in the control of neuronal apoptosis upstream of mitochondria. We show that expression of Trim17 is increased both at the mRNA and protein level in several in vitro models of transcription-dependent neuronal apoptosis. Expression of Trim17 is controlled by the PI3K/Akt/GSK3 pathway in cerebellar granule neurons (CGN). Moreover, the Trim17 protein is expressed in vivo, in apoptotic neurons that naturally die during post-natal cerebellar development. Overexpression of active Trim17 in primary CGN was sufficient to induce the intrinsic pathway of apoptosis in survival conditions. This pro-apoptotic effect was abolished in Bax(-/-) neurons and depended on the E3 activity of Trim17 conferred by its RING domain. Furthermore, knock-down of endogenous Trim17 and overexpression of dominant-negative mutants of Trim17 blocked trophic factor withdrawal-induced apoptosis both in CGN and in sympathetic neurons. Collectively, our data are the first to assign a cellular function to Trim17 by showing that its E3 activity is both necessary and sufficient for the initiation of neuronal apoptosis. Cell Death and Differentiation (2010) 17, 1928-1941; doi: 10.1038/cdd.2010.73; published online 18 June 201

    The emerging role of Nrf2 in mitochondrial function

    Get PDF
    The transcription factor NF-E2 p45-related factor 2 (Nrf2; gene name NFE2L2) allows adaptation and survival under conditions of stress by regulating the gene expression of diverse networks of cytoprotective proteins, including antioxidant, anti-inflammatory, and detoxification enzymes as well as proteins that assist in the repair or removal of damaged macromolecules. Nrf2 has a crucial role in the maintenance of cellular redox homeostasis by regulating the biosynthesis, utilization, and regeneration of glutathione, thioredoxin, and NADPH and by controlling the production of reactive oxygen species by mitochondria and NADPH oxidase. Under homeostatic conditions, Nrf2 affects the mitochondrial membrane potential, fatty acid oxidation, availability of substrates (NADH and FADH2/succinate) for respiration, and ATP synthesis. Under conditions of stress or growth factor stimulation, activation of Nrf2 counteracts the increased reactive oxygen species production in mitochondria via transcriptional upregulation of uncoupling protein 3 and influences mitochondrial biogenesis by maintaining the levels of nuclear respiratory factor 1 and peroxisome proliferator-activated receptor Ξ³ coactivator 1Ξ±, as well as by promoting purine nucleotide biosynthesis. Pharmacological Nrf2 activators, such as the naturally occurring isothiocyanate sulforaphane, inhibit oxidant-mediated opening of the mitochondrial permeability transition pore and mitochondrial swelling. Curiously, a synthetic 1,4-diphenyl-1,2,3-triazole compound, originally designed as an Nrf2 activator, was found to promote mitophagy, thereby contributing to the overall mitochondrial homeostasis. Thus, Nrf2 is a prominent player in supporting the structural and functional integrity of the mitochondria, and this role is particularly crucial under conditions of stress

    Treatment with a BH3 mimetic overcomes the resistance of latency III EBV (+) cells to p53-mediated apoptosis

    Get PDF
    P53 inactivation is often observed in Burkitt's lymphoma (BL) cells due to mutations in the p53 gene or overexpression of its negative regulator, murine double minute-2 (MDM2). This event is now considered an essential part of the oncogenic process. Epstein–Barr virus (EBV) is strongly associated with BL and is a cofactor in its development. We previously showed that nutlin-3, an antagonist of MDM2, activates the p53 pathway in BL cell lines harboring wild-type p53. However, nutlin-3 strongly induced apoptosis in EBV (βˆ’) or latency I EBV (+) cells, whereas latency III EBV (+) cells were much more resistant. We show here that this resistance to apoptosis is also observed in latency III EBV (+) lymphoblastoid cell lines. We also show that, in latency III EBV (+) cells, B-cell lymphona 2 (Bcl-2) is selectively overproduced and interacts with Bcl-2-associated X protein (Bax), preventing its activation. The treatment of these cells with the Bcl-2-homology domain 3 mimetic ABT-737 disrupts Bax/Bcl-2 interaction and allows Bax activation by nutlin-3. Furthermore, treatment with these two compounds strongly induces apoptosis. Thus, a combination of Mdm2 and Bcl-2 inhibitors might be a useful anti-cancer strategy for diseases linked to EBV infection

    Conformational changes and protein stability of the pro-apoptotic protein Bax

    Get PDF
    Pro-apoptotic Bax is a soluble and monomeric protein under normal physiological conditions. Upon its activation substantial structural rearrangements occur: The protein inserts into the mitochondrial outer membrane and forms higher molecular weight oligomers. Subsequently, the cells can undergo apoptosis. In our studies, we focused on the structural rearrangements of Bax during oligomerization and on the protein stability. Both protein conformations exhibit high stability against thermal denaturation, chemically induced unfolding and proteolytic processing. The oligomeric protein is stable up to 90Β Β°C as well as in solutions of 8Β M urea or 6Β M guanidinium hydrochloride. Helix 9 appears accessible in the monomer but hidden in the oligomer assessed by proteolysis. Tryptophan fluorescence indicates that the environment of the C-terminal protein half becomes more apolar upon oligomerization, whereas the loop region between helices 1 and 2 gets solvent exposed
    • …
    corecore