2,177 research outputs found
Comparison of aerodynamic theory and experiment for jet-flap wings
Aerodynamic theory predictions made for a jet flapped wing were compared with experimental data obtained in a fairly extensive series of tests in the Langley V/STOL tunnel. The tests were made on a straight, rectangular wing and investigated two types of jet flap concepts: a pure jet flap with high jet deflection and a wing with blowing at the knee of a plain trailing edge flap. The tests investigated full and partial span blowing for wing aspect ratios of 8.0 and 5.5 and momentum coefficients from 0 to about 4. The total lift, drag, and pitching moment coefficients predicted by the theory were in excellent agreement with experimental values for the pure jet flap, even with the high jet deflection. The pressure coefficients on the wing, and hence the circulation lift coefficients, were underpredicted, however, because of the linearizing assumptions of the planar theory. The lift, drag, and pitching moment coefficients, as well as pressure coefficients, were underpredicted for the wing with blowing over the flap because of the failure of the theory to account for the interaction effect of the high velocity jet passing over the flap
Ultracold Atoms as a Target: Absolute Scattering Cross-Section Measurements
We report on a new experimental platform for the measurement of absolute
scattering cross-sections. The target atoms are trapped in an optical dipole
trap and are exposed to an incident particle beam. The exponential decay of the
atom number directly yields the absolute total scattering cross-section. The
technique can be applied to any atomic or molecular species that can be
prepared in an optical dipole trap and provides a large variety of possible
scattering scenarios
A Catalog of Candidate Intermediate-luminosity X-ray Objects
ROSAT, and now Chandra, X-ray images allow studies of extranuclear X-ray
point sources in galaxies other than our own. X-ray observations of normal
galaxies with ROSAT and Chandra have revealed that off-nuclear, compact,
Intermediate-luminosity (Lx[2-10 keV] >= 1e39 erg/s) X-ray Objects (IXOs,
a.k.a. ULXs [Ultraluminous X-ray sources]) are quite common. Here we present a
catalog and finding charts for 87 IXOs in 54 galaxies, derived from all of the
ROSAT HRI imaging data for galaxies with cz <= 5000 km/s from the Third
Reference Catalog of Bright Galaxies (RC3). We have defined the cutoff Lx for
IXOs so that it is well above the Eddington luminosity of a 1.4 Msun black hole
(10^38.3 erg/s), so as not to confuse IXOs with ``normal'' black hole X-ray
binaries. This catalog is intended to provide a baseline for follow-up work
with Chandra and XMM, and with space- and ground-based survey work at
wavelengths other than X-ray. We demonstrate that elliptical galaxies with IXOs
have a larger number of IXOs per galaxy than non-elliptical galaxies with IXOs,
and note that they are not likely to be merely high-mass X-ray binaries with
beamed X-ray emission, as may be the case for IXOs in starburst galaxies.
Approximately half of the IXOs with multiple observations show X-ray
variability, and many (19) of the IXOs have faint optical counterparts in DSS
optical B-band images. Follow-up observations of these objects should be
helpful in identifying their nature.Comment: 29 pages, ApJS, accepted (catalog v2.0) (full resolution version of
paper and future releases of catalog at http://www.xassist.org/ixocat_hri
Bulk de novo mitogenome assembly from pooled total DNA elucidates the phylogeny of weevils (Coleoptera: Curculionoidea)
Complete mitochondrial genomes have been shown to be reliable markers for phylogeny reconstruction among diverse animal groups. However, the relative difficulty and high cost associated with obtaining de novo full mitogenomes have frequently led to conspicuously low taxon sampling in ensuing studies. Here, we report the successful use of an economical and accessible method for assembling complete or near-complete mitogenomes through shot-gun next-generation sequencing of a single library made from pooled total DNA extracts of numerous target species. To avoid the use of separate indexed libraries for each specimen, and an associated increase in cost, we incorporate standard polymerase chain reaction-based “bait” sequences to identify the assembled mitogenomes. The method was applied to study the higher level phylogenetic relationships in the weevils (Coleoptera: Curculionoidea), producing 92 newly assembled mitogenomes obtained in a single Illumina MiSeq run. The analysis supported a separate origin of wood-boring behavior by the subfamilies Scolytinae, Platypodinae, and Cossoninae. This finding contradicts morphological hypotheses proposing a close relationship between the first two of these but is congruent with previous molecular studies, reinforcing the utility of mitogenomes in phylogeny reconstruction. Our methodology provides a technically simple procedure for generating densely sampled trees from whole mitogenomes and is widely applicable to groups of animals for which bait sequences are the only required prior genome knowledge
Chandra Snapshot Observations of Low-Luminosity AGNs with a Compact Radio Source
The results of Chandra snapshot observations of 11 LINERs (Low-Ionization
Nuclear Emission-line Regions), three low-luminosity Seyfert galaxies, and one
HII-LINER transition object are presented. Our sample consists of all the
objects with a flat or inverted spectrum compact radio core in the VLA survey
of 48 low-luminosity AGNs (LLAGNs) by Nagar et al. (2000). An X-ray nucleus is
detected in all galaxies except one and their X-ray luminosities are in the
range 5x10^38 to 8x10^41 erg/s. The X-ray spectra are generally steeper than
expected from thermal bremsstrahlung emission from an advection-dominated
accretion flow (ADAF). The X-ray to Halpha luminosity ratios for 11 out of 14
objects are in good agreement with the value characteristic of LLAGNs and more
luminous AGNs, and indicate that their optical emission lines are predominantly
powered by a LLAGN. For three objects, this ratio is less than expected.
Comparing with properties in other wavelengths, we find that these three
galaxies are most likely to be heavily obscured AGN. We use the ratio RX = \nu
L\nu (5 GHz)/LX, where LX is the luminosity in the 2-10 keV band, as a measure
of radio loudness. In contrast to the usual definition of radio loudness (RO =
L\nu(5 GHz)/L\nu(B)), RX can be used for heavily obscured (NH >~ 10^23 cm^-2,
AV>50 mag) nuclei. Further, with the high spatial resolution of Chandra, the
nuclear X-ray emission of LLAGNs is often easier to measure than the nuclear
optical emission. We investigate the values of RX for LLAGNs, luminous Seyfert
galaxies, quasars and radio galaxies and confirm the suggestion that a large
fraction of LLAGNs are radio loud.Comment: 15 pages, accepted for publication in Ap
Bipolar-Hyper-Shell Galactic Center Statrburst Model: Further Evidence from ROSAT Data and New Radio and X-ray Simulations
Using the all-sky ROSAT soft X-ray and 408-MHz radio continuum data, we show
that the North Polar Spur and its western and southern counter-spurs draw a
giant dumbbell-shape necked at the galactic plane. We interpret these features
as due to a shock front originating from a starburst 15 million years ago with
a total energy of the order of ergs or type II
supernovae. We simulate all-sky distributions of radio continuum and soft X-ray
intensities based on the bipolar-hyper-shell galactic center starburst model.
The simulations can well reproduce the radio NPS and related spurs, as well as
radio spurs in the tangential directions of spiral arms. Simulated X-ray maps
in 0.25, 0.75 and 1.5 keV bands reproduce the ROSAT X-ray NPS, its western and
southern counter-spurs, and the absorption layer along the galactic plane. We
propose to use the ROSAT all-sky maps to probe the physics of gas in the
halo-intergalactic interface, and to directly date and measure the energy of a
recent Galactic Center starburst.Comment: To appear in ApJ, Latex MS in ApJ macro, 8 figures in jpg (original
quality ps figs available on request
Quantification of mechanical forces and physiological processes involved in pollen tube growth using microfluidics and microrobotics
Pollen tubes face many obstacles on their way to the ovule. They have to decide whether to navigate around cells or penetrate the cell wall and grow through it or even within it. Besides chemical sensing, which directs the pollen tubes on their path to the ovule, this involves mechanosensing to determine the optimal strategy in specific situations. Mechanical cues then need to be translated into physiological signals, which eventually lead to changes in the growth behavior of the pollen tube. To study these events, we have developed a system to directly quantify the forces involved in pollen tube navigation. We combined a lab-on-a-chip device with a microelectromechanical systems-based force sensor to mimic the pollen tube's journey from stigma to ovary in vitro. A force-sensing plate creates a mechanical obstacle for the pollen tube to either circumvent or attempt to penetrate while measuring the involved forces in real time. The change of growth behavior and intracellular signaling activities can be observed with a fluorescence microscope
Calculation of coercivity of magnetic nanostructures at finite temperatures
We report a finite temperature micromagnetic method (FTM) that allows for the
calculation of the coercive field of arbitrary shaped magnetic nanostructures
at time scales of nanoseconds to years. Instead of directly solving the
Landau-Lifshitz-Gilbert equation, the coercive field is obtained without any
free parameter by solving a non linear equation, which arises from the
transition state theory. The method is applicable to magnetic structures where
coercivity is determined by one thermally activated reversal or nucleation
process. The method shows excellent agreement with experimentally obtained
coercive fields of magnetic nanostructures and provides a deeper understanding
of the mechanism of coercivity.Comment: submitted to Phys. Rev.
[18F]-Fluorodeoxyglucose-positron emission tomography in rats with prolonged cocaine self-administration suggests potential brain biomarkers for addictive behavior
The DSM5-based dimensional diagnostic approach defines substance use disorders on a continuum from recreational drug use to habitual and ultimately addicted behavior. Biomarkers that are indicative of recreational drug use and addicted behavior are lacking. We performed a translational [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) study in the multi-dimensional 0/3crit model of cocaine addiction. Addict-like (3crit) and non-addict-like (0crit) rats, which shared identical life conditions and levels of cocaine self-administration, were acquired for FDG-PET under baseline conditions and following cocaine and yohimbine challenges. Compared to cocaine-naïve control rats, 0crit animals showed higher glucose uptake in the caudate putamen (CPu) and medial prefrontal cortex (mPFC) respect to naïve controls. 3crit animals did not show this adaptive higher glucose utilization, but had lower uptake in several cortical areas. Both cocaine and yohimbine challenges affected glucose uptake in control rats in several brain sites, but not in 0crit and 3crit rats, indicating that impaired glucose mobilization in response to these challenges is not specifically associated with addictive behavior. Compared to 0crit, 3crit rats showed higher reinstatement responses, which were negatively associated with glucose uptake in the ventral tegmental area. Data indicate that cocaine non-addict- and addict-like phenotypes are associated with several potential biomarkers. Specifically, we propose that increased glucose uptake in the CPu and mPFC is a function of controlled drug use, whereas a loss of striatal and prefrontal metabolic activity and reduced uptake in cortical areas are indicative of addictive behavior
Chandra View of the Dynamically Young Cluster of Galaxies A1367 I. Small-Scale Structures
The 40 ks \emph{Chandra} ACIS-S observation of A1367 provides new insights
into small-scale structures and point sources in this dynamically young
cluster. Here we concentrate on small-scale extended structures. A ridge-like
structure around the center (``the ridge'') is significant in the \chandra\
image. The ridge, with a projected length of 8 arcmin (or 300
h kpc), is elongated from northwest (NW) to southeast (SE), as is
the X-ray surface brightness distribution on much larger scales ( 2
h Mpc). The ridge is cooler than its western and southern
surroundings while the differences from its eastern and northern surroundings
are small. We also searched for small-scale structures with sizes
arcmin. Nine extended features, with sizes from 0.5 to 1.5, were
detected at significance levels above 4 . Five of the nine features are
located in the ridge and form local crests. The nine extended features can be
divided into two types. Those associated with galaxies (NGC 3860B, NGC 3860 and
UGC 6697) are significantly cooler than their surroundings (0.3 - 0.9 keV vs. 3
- 4.5 keV). The masses of their host galaxies are sufficient to bind the
extended gas. These extended features are probably related to thermal halos or
galactic superwinds of their host galaxies. The existence of these relatively
cold halos imply that galaxy coronae can survive in cluster environment (e.g.,
Vikhlinin et al. 2001). Features of the second type are not apparently
associated with galaxies. Their temperatures may not be significantly different
from those of their surroundings. This class of extended features may be
related to the ridge. We consider several possibilities for the ridge and the
second type of extended features. The merging scenario is preferred.Comment: To appear in ApJ, Vol 576, 2002, Sep., a high-resolution version is
in http://cfa160.harvard.edu/~sunm/a1367_a.ps.g
- …