110 research outputs found
Transport and reduction of nitrate in clayey till underneath forest and arable land.
Transport and reduction of nitrate in a typically macroporous clayey till were examined at variable flow rate and nitrate flux. The experiments were carried out using saturated, large diameter (0.5 m), undisturbed soil columns (LUC), from a forest and nearby agricultural sites. Transport of nitrate was controlled by flow along the macropores (fractures and biopores) in the columns. Nitrate reduction (denitrification) determined under active flow mainly followed first order reactions with half-lives (t1/2) increasing with depth (1.5–3.5 m) from 7 to 35 days at the forest site and 1–7 h at the agricultural site. Nitrate reduction was likely due to microbial degradation of accumulated organic matter coupled with successive consumption of O2 and NO3− in the macropore water followed by reductive dissolution of Fe and Mn from minerals along the macropores. Concentrations of total organic carbon measured in soil samples were near identical at the two study sites and consequently not useful as indicator for the observed differences in nitrate reduction. Instead the high reduction rates at the agricultural site were positively correlated with elevated concentration of water-soluble organic carbon and nitrate-removing bacteria relative to the forest site. After high concentrations of water-soluble organic carbon in the columns from the agricultural site were leached they lost their elevated reduction rates, which, however, was successfully re-established by infiltration of new reactive organics represented by pesticides. Simulations using a calibrated discrete fracture matrix diffusion (DFMD) model could reasonably reproduce the denitrification and resulting flux of nitrate observed during variable flow rate from the columns
Radioactive contamination of Danish Territory after core-melt accidents at the Barsebäck Power Plant
Greenland and Canadian Arctic ice temperature profiles database
Here, we present a compilation of 95 ice temperature profiles from 85 boreholes from the Greenland ice sheet and peripheral ice caps, as well as local ice caps in the Canadian Arctic. Profiles from only 31 boreholes (36 %) were previously available in open-access data repositories. The remaining 54 borehole profiles (64 %) are being made digitally available here for the first time. These newly available profiles, which are associated with pre-2010 boreholes, have been submitted by community members or digitized from published graphics and/or data tables. All 95 profiles are now made available in both absolute (meters) and normalized (0 to 1 ice thickness) depth scales and are accompanied by extensive metadata. These metadata include a transparent description of data provenance. The ice temperature profiles span 70 years, with the earliest profile being from 1950 at Camp VI, West Greenland. To highlight the value of this database in evaluating ice flow simulations, we compare the ice temperature profiles from the Greenland ice sheet with an ice flow simulation by the Parallel Ice Sheet Model (PISM). We find a cold bias in modeled near-surface ice temperatures within the ablation area, a warm bias in modeled basal ice temperatures at inland cold-bedded sites, and an apparent underestimation of deformational heating in high-strain settings. These biases provide process level insight on simulated ice temperatures
Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet
We present here surface water vapor isotopic measurements conducted from June to August 2010 at the NEEM
(North Greenland Eemian Drilling Project) camp, NW Greenland (77.45 degrees N, 51.05 degrees W, 2484 m a.s.l.).
Measurements were conducted at 9 different heights from 0.1m to 13.5m above the snow surface using two different types of cavity-enhanced near-infrared absorption spectroscopy analyzers. For each instrument specific protocols were developed for calibration and drift corrections. The inter-comparison of corrected results from different instruments reveals excellent reproducibility, stability, and precision with a standard deviations of similar to 0.23 parts per thousand for delta O-18 and similar to 1.4 parts per thousand for delta D. Diurnal and intraseasonal variations show strong relationships between changes in local surface humidity and water vapor isotopic composition, and with local and synoptic weather conditions. This variability probably results from the interplay between local moisture fluxes, linked with firn-air exchanges, boundary layer dynamics,
and large-scale moisture advection. Particularly remarkable are several episodes characterized by high (> 40 parts per
thousand) surface water vapor deuterium excess. Air mass back-trajectory calculations from atmospheric analyses and water tagging in the LMDZiso (Laboratory of Meteorology Dynamics Zoom-isotopic) atmospheric model reveal that these events are associated with predominant Arctic air mass origin. The analysis suggests that high deuterium excess levels are a result of strong kinetic fractionation during evaporation at the sea-ice margin
Sea-ice dynamics in an Arctic coastal polynya during the past 6500 years
The production of high-salinity brines during sea-ice freezing in circum-arctic coastal polynyas is thought to be part of northern deep water formation as it supplies additional dense waters to the Atlantic meridional overturning circulation system. To better predict the effect of possible future summer ice-free conditions in the Arctic Ocean on global climate, it is important to improve our understanding of how climate change has affected sea-ice and brine formation, and thus finally dense water formation during the past. Here, we show temporal coherence between sea-ice conditions in a key Arctic polynya (Storfjorden, Svalbard) and patterns of deep water convection in the neighbouring Nordic Seas over the last 6500 years. A period of frequent sea-ice melting and freezing between 6.5 and 2.8 ka BP coincided with enhanced deep water renewal in the Nordic Seas. Near-permanent sea-ice cover and low brine rejection after 2.8 ka BP likely reduced the overflow of high-salinity shelf waters, concomitant with a gradual slow down of deep water convection in the Nordic Seas, which occurred along with a regional expansion in sea-ice and surface water freshening. The Storfjorden polynya sea-ice factory restarted at ~0.5 ka BP, coincident with renewed deep water penetration to the Arctic and climate amelioration over Svalbard. The identified synergy between Arctic polynya sea-ice conditions and deep water convection during the present interglacial is an indication of the potential consequences for ocean ventilation during states with permanent sea-ice cover or future Arctic ice-free conditions
Biofluid Biomarkers in Huntington's Disease
Huntington's disease (HD) is a chronic progressive neurodegenerative condition where new markers of disease progression are needed. So far no disease-modifying interventions have been found, and few interventions have been proven to alleviate symptoms. This may be partially explained by the lack of reliable indicators of disease severity, progression, and phenotype.Biofluid biomarkers may bring advantages in addition to clinical measures, such as reliability, reproducibility, price, accuracy, and direct quantification of pathobiological processes at the molecular level; and in addition to empowering clinical trials, they have the potential to generate useful hypotheses for new drug development.In this chapter we review biofluid biomarker reports in HD, emphasizing those we feel are likely to be closest to clinical applicability
- …