39 research outputs found

    Frequency shifts in noble-gas magnetometers

    Full text link
    Polarized nuclei are a powerful tool in nuclear spin studies and in searches for beyond-the-standard model physics. Noble-gas comagnetometer systems, which compare two nuclear species, have thus far been limited by anomalous frequency variations of unknown origin. We studied the self-interactions in a 3^3He-129^{129}Xe system by independently addressing, controlling and measuring the influence of each component of the nuclear spin polarization. Our results directly rule out prior explanations of the shifts, and demonstrate experimentally that they can be explained by species dependent self-interactions. We also report the first gas phase frequency shift induced by 129^{129}Xe on 3^3He.Comment: v.

    Two-Loop Quark Self-Energy in a New Formalism (II): Renormalization of the Quark Propagator in the Light-Cone Gauge

    Get PDF
    The complete two-loop correction to the quark propagator, consisting of the spider, rainbow, gluon bubble and quark bubble diagrams, is evaluated in the noncovariant light-cone gauge (lcg). (The overlapping self-energy diagram had already been computed.) The chief technical tools include the powerful matrix integration technique, the n^*-prescription for the spurious poles of 1/qn, and the detailed analysis of the boundary singularities in five- and six-dimensional parameter space. It is shown that the total divergent contribution to the two-loop correction Sigma_2 contains both covariant and noncovariant components, and is a local function of the external momentum p, even off the mass-shell, as all nonlocal divergent terms cancel exactly. Consequently, both the quark mass and field renormalizations are local. The structure of Sigma_2 implies a quark mass counterterm of the form δm(lcg)=mα~sCF(3+α~sW)+O(α~s3)\delta m (lcg) = m\tilde\alpha_s C_F(3+\tilde\alpha_sW) + {\rm O} (\tilde\alpha_s^3), \tilde\alpha_s = g^2\Gamma(\eps)(4\pi)^{\eps -2}, with W depending only on the dimensional regulator epsilon, and on the numbers of colors and flavors. It turns out that \delta m(lcg) is identical to the mass counterterm in the general linear covariant gauge. Our results are in agreement with the Bassetto-Dalbosco-Soldati renormalization scheme.Comment: 36 pages Latex, 5 eps figures, to appear in Nucl.Phys.

    Fast Evaluation of Feynman Diagrams

    Get PDF
    We develop a new representation for the integrals associated with Feynman diagrams. This leads directly to a novel method for the numerical evaluation of these integrals, which avoids the use of Monte Carlo techniques. Our approach is based on based on the theory of generalized sinc (sin(x)/x\sin(x)/x) functions, from which we derive an approximation to the propagator that is expressed as an infinite sum. When the propagators in the Feynman integrals are replaced with the approximate form all integrals over internal momenta and vertices are converted into Gaussians, which can be evaluated analytically. Performing the Gaussians yields a multi-dimensional infinite sum which approximates the corresponding Feynman integral. The difference between the exact result and this approximation is set by an adjustable parameter, and can be made arbitrarily small. We discuss the extraction of regularization independent quantities and demonstrate, both in theory and practice, that these sums can be evaluated quickly, even for third or fourth order diagrams. Lastly, we survey strategies for numerically evaluating the multi-dimensional sums. We illustrate the method with specific examples, including the the second order sunset diagram from quartic scalar field theory, and several higher-order diagrams. In this initial paper we focus upon scalar field theories in Euclidean spacetime, but expect that this approach can be generalized to fields with spin.Comment: uses feynmp macros; v2 contains improved description of renormalization, plus other minor change

    Phenomenology of Quantum Gravity and its Possible Role in Neutrino Anomalies

    Full text link
    New phenomenological models of Quantum Gravity have suggested that a Lorentz-Invariant discrete spacetime structure may become manifest through a nonstandard coupling of matter fields and spacetime curvature. On the other hand, there is strong experimental evidence suggesting that neutrino oscillations cannot be described by simply considering neutrinos as massive particles. In this manuscript we motivate and construct one particular phenomenological model of Quantum Gravity that could account for the so-called neutrino anomalies.Comment: For the proceedings of "Relativity and Gravitation: 100 Years after Einstein in Prague" (June 2012, Prague

    On the evaluation of a certain class of Feynman diagrams in x-space: Sunrise-type topologies at any loop order

    Full text link
    We review recently developed new powerful techniques to compute a class of Feynman diagrams at any loop order, known as sunrise-type diagrams. These sunrise-type topologies have many important applications in many different fields of physics and we believe it to be timely to discuss their evaluation from a unified point of view. The method is based on the analysis of the diagrams directly in configuration space which, in the case of the sunrise-type diagrams and diagrams related to them, leads to enormous simplifications as compared to the traditional evaluation of loops in momentum space. We present explicit formulae for their analytical evaluation for arbitrary mass configurations and arbitrary dimensions at any loop order. We discuss several limiting cases of their kinematical regimes which are e.g. relevant for applications in HQET and NRQCD.Comment: 100 pages, 16 eps-figures include

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference
    corecore