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ABSTRACT

The complete two-loop correction to the quark propagator, consisting of the
spider, rainbow, gluon bubble and quark bubble diagrams, is evaluated in the non-
covariant light-cone gauge (lcg), n·Aa(x) = 0, n2 = 0. (The overlapping self-energy
diagram had already been computed.) The chief technical tools include the powerful
matrix integration technique, the n∗

µ-prescription for the spurious poles of (q ·n)−1,
and the detailed analysis of the boundary singularities in five- and six-dimensional
parameter space. It is shown that the total divergent contribution to the two-loop
correction Σ2 contains both covariant and noncovariant components, and is a lo-

cal function of the external momentum p, even off the mass-shell, as all nonlocal

divergent terms cancel exactly. Consequently, both the quark mass and field renor-
malizations are local. The structure of Σ2 implies a quark mass counterterm of the
form δm(lcg) = mα̃sCF (3 + α̃sW ) + O(α̃3

s), α̃s ≡ g2Γ(ǫ)(4π)ǫ−2, with W depending
only on the dimensional regulator ǫ, and on the numbers of colors and flavors. It
turns out that δm(lcg) is identical to the mass counterterm in the general linear
covariant gauge. Our results are in agreement with the Bassetto-Dalbosco-Soldati
renormalization scheme.
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1 Introduction

A quarter of a century ago the light-cone gauge was a gauge “to fortune and to fame
unknown”. It was regarded as a freakish member of the family of axial-type gauges
that existed more by accident than by inventive planning [1]. Today, the light-
cone gauge enjoys respect and a privileged status among noncovariant gauges for
the following two reasons: first, computations in the light-cone gauge have proved
to be meaningful, both at one and two loops. Second, the renormalizability of
light-cone QCD, as demonstrated in this article, has finally been established at
two-loop order by explicit computation. Specifically, we shall discuss here in some
detail the renormalization of the quark propagator to two loops in the light-cone
gauge n ·Aa = 0, n2 = 0, where Aa

µ denotes the gauge field and nµ = (n0, ~n) is an
arbitrary, but fixed, four-vector, µ = 0, 1, 2, 3 [2]. The diagrams for this process are
depicted in Figure 1. We note that the results for the one-loop quark self-energy
function (Fig. 1f) and for the overlapping self-energy function (Fig. 1b) have already
been reported in the literature [3, 4]. These two diagrams are included here for
completeness.

Whereas computation of Fig. 1f was straightforward, at least in hindsight, eval-
uation of the overlapping quark self-energy [4, 5] required the introduction of a new
procedure, called the matrix integration technique. We recall that in this procedure,
the two momentum integrals of

∫
d2ωq

∫
d2ωkf(q, k), where 2ω denotes the complex

dimensionality of space-time, are integrated over 4ω-dimensional space in a sin-

gle operation. We further recall that the biggest advantage of the matrix method
is the ability to execute the momentum integrations exactly and in closed form.
With the momentum integrals conveniently “out of the way”, we can then concen-
trate on the wide variety of new parameter singularities which is so characteristic
of noncovariant-gauge multi-loop integrals. It turns out that the matrix method
enables us to handle these new parameter singularities in a consistent and unam-
biguous manner. By comparison, multi-loop integrals with fewer and less severe
parameter singularities may, in general, be evaluated by means of the nested method

[4, 5, 6, 7]. In this traditional approach, the 2ω-momentum integrations are carried
out sequentially.

We finally observe that the matrix integration technique works for covariant
and noncovariant gauges alike, and regardless whether the integrals are massive or
massless. We shall have occasion later in this article to highlight specific technical
features of this powerful technique.
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Figure 1: One- and two-loop quark self-energy diagrams for QCD. Wavy lines denote
gluons, straight lines denote quarks. p, q, and k are four-momenta.

2



It is well known [8, 9] that in covariant gauges, QCD may be renormalized by a
redefinition of the masses, coupling constants, and field normalizations. However, for
noncovariant gauges, such as the light-cone gauge, the situation is more complicated:
in addition to the same types of counterterms that arise in covariant gauges, for
light-cone QCD we also require nµ-dependent counterterms. These noncovariant

counterterms are different from any of the terms in the original Lagrangian density.
On the other hand, and in contrast to the covariant case, no physical measurements
are needed to fix the finite parts of these new noncovariant counterterms. Instead,
the finite parts are constrained by the requirement that all physical observables
be Lorentz-covariant. In a sense, the presumption of covariance of the observables
constitutes an infinite set of physical constraints on the noncovariant counterterms.

In 1987, Bassetto, Dalbosco, and Soldati (BDS) [10, 11] proposed a renormal-
ization scheme for light-cone QCD in which the particular types of noncovariant
counterterms – permitted by gauge symmetry and Lorentz symmetry – are absorbed
into the original Lagrangian density by means of noncovariant renormalizations of
the quark and gluon fields. Unlike the covariant-gauge case, where the renormaliza-
tion factors are scalars, in the BDS scheme the renormalization factors are matrices.
The result is that the different spin-components of the quark and gluon fields are

renormalized differently. The present two-loop calculations are a clear vindication
of the BDS renormalization scheme.

The plan of paper (II) is as follows. In Section 2 we derive the integrands of the
light-cone integrals for the various diagrams of Figure 1, and then break them down
into approximately 80 simpler integrands. In Section 3 we illustrate, by means of
examples, methods for handling the various integrations. The explicit values for
the divergent parts of all integrals are tabulated in the Appendix. These results
are analytic and allow for general quark masses. The counterterms needed for the
renormalization of the quark self-energy to two loops in the light-cone gauge are
derived in Section 4. It turns out that all required counterterms are local (that
is, polynomial in the external momentum), and that their coefficients satisfy the
relationships implied by the BDS renormalization scheme. The paper concludes in
Section 5 with a summary of our results and their significance.

2 Derivation of the Integrals

The Lagrangian density for light-cone QCD reads

L = −1
4
F a

µνF
aµν + ψα(i∂/−m)ψα + gT a

αβψαA/
aψβ + Lfix + Lgh + Lct , (1)

where external source terms and quark flavor indices have been suppressed, and

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , µ, ν = 0 . . 3, ∂µ ≡ ∂/∂xµ,
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Aa
µ(x) = gluon fields, a, b, c = gluon indices = 1 . . 8 for SU(3),

ψα(x) = quark fields, α, β = color indices = 1, 2, 3, ψ ≡ ψ†γ0,

A/ ≡ γ ·A, ∂/ ≡ γ ·∂, etc., γµ = Dirac matrices, (γ0)2 = 1,

m = quark rest mass, g = coupling constant,

T a
αβ = generators of SU(3), normalized such that [T a, T b] = ifabcT c,

fabc = antisymmetric structure constants of SU(3) (with fabcf bcd = 3δad),

Lfix = gauge-fixing term = −(n·A)2/(2λ), with λ to be taken to zero later,

Lgh = ghost terms = −ηa(δabn·∂ − gfabcn·Ac)ηb, ηa = ghost fields, and

Lct = counterterms.

Repeated indices imply summation, and we use a +,−,−,− metric for Minkowski
space.

2.1 The Feynman Rules

The Lagrangian (1) leads to the following Feynman rules for light-cone QCD [11,
12, 13]:

Quark propagator:

iδαβS(p), with S(p) ≡
p/+m

p2 −m2 + iθ
, θ > 0, (2)

where pµ is the quark 4-momentum, α and β are color indices as in (1), and the iθ
term is Feynman’s prescription for avoiding a singularity when p2 = m2. (We let θ
go to zero after Wick rotation.)

Gluon propagator: iδabGµν(q), with

Gµν(q) ≡
−1

q2 + iθ

(
gµν −

nµqν + qµnν

n·q
+
λq2qµqν
(n·q)2

)
, θ > 0, (3)

where qµ is the gluon 4-momentum. The gauge-fixing parameter λ is now taken to
zero, causing the third term in parentheses to drop out.

Quark-quark-gluon vertex factor: igγµT a
αβ .

3-gluon vertex factor: gfabc[(p− q)ρgµν + (q − k)µgνρ + (k − p)νgµρ], where
p, q, k are the incoming 4-momenta of the attached gluons.
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4-gluon vertex factor: −ig2[fabef cde(gµρgνσ−gµσgνρ)+facef bde(gµνgρσ−gµσgνρ)+
fadef cbe(gµρgνσ − gµνgρσ)].

Ghost propagator: δab/(n·k), where kµ is the ghost 4-momentum.

Ghost-ghost-gluon vertex factor: −igfabcnµ, where µ and a match indices of
the attached gluon, while b and c match indices of the attached ghosts. Note that
ghosts “decouple” in the light-cone gauge, because the ghost-ghost-gluon vertex
factor is orthogonal to the gluon propagator (3) when λ = 0 [14, 1].

Counterterm vertex factors: to be determined in Section 4.

To construct the dimensionally regularized Green function for a diagram, we
first impose conservation of momentum at each vertex, so that, apart from external
momenta, there is only one independent momentum per loop. (In Figure 1, these
momenta are denoted by q and k.) We then form the product of the propagators
and vertex factors for all internal lines and vertices, divide by (2π)2ω for each loop,
and integrate the resulting expression over the 2ω-dimensional space of each loop
momentum. Finally, we multiply the integral by −1 for each internal quark loop,
divide by r! for each pair of vertices connected by r gluon lines, and also divide by the
number of permutations of the vertices which leave the diagram invariant (for fixed
external lines) [11, 15]. In Figure 1, only diagram e (quark-bubble) has an internal
quark loop, only diagram d (gluon-bubble) has a pair of vertices connected by more
than one gluon line, and no diagram is invariant under a non-trivial permutation of
its vertices.

The procedure just described gives only the “amputated” Green function, since
it includes no factors for the external lines of the diagram.

2.2 The Integrals and the n∗
µ
-Prescription

To illustrate the application of the above Feynman rules, we may immediately write
down the amputated Green function for the one-loop diagram of Figure 1f:

δακΣ1(p) =
−g2T a

αβT
a
βκ

(2π)2ω

∫

M
γµS(p− q)γν Gµν(q) d2ωq, (4)

where
∫
M denotes integration over Minkowski space, and S and G are the propaga-

tors defined in equations (2) and (3) (with λ = 0, and m equal to the rest mass of
the external quark). To avoid a singularity in G when n·q = 0 (in this and other
integrals), we shall use the n∗

µ-prescription (ML-prescription) [16, 2], in which

1

n·q
→ lim

θ→0

n∗·q

n∗·q n·q + iθ
= lim

θ→0

2n∗·q

n∗·n q2
‖ + 2iθ

, θ > 0, (5)
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where n∗
µ is a new light-like 4-vector (n∗2 = 0), with n∗·n > 0 in Minkowski space,

and

q‖µ ≡
n∗·q nµ + n·q n∗

µ

n∗·n
, q⊥µ ≡ qµ − q‖µ (6)

for any 4-vector qµ. The same prescription applies to (n ·k)−1, with the same n∗
µ,

but with k in place of q. Prescription (5) was subsequently recovered in the context
of canonical quantization by Bassetto et al. [17]. Unlike the old “principal value”
prescription, the n∗

µ-prescription is consistent with both Wick rotation and power-
counting [1, 7, 11, 12].

The amputated Green functions for the five two-loop diagrams of Figure 1 possess
the following structure:

Rainbow diagram: ig4T a
αβT

b
βγT

b
γδT

a
δκ(2π)−4ωIa, with

Ia ≡
∫

M
d2ωq

∫

M
d2ωk γµS(p− q)γνS(p− q − k)γρS(p− q)γσ Gµσ(q)Gνρ(k).

Overlapping diagram: ig4T a
αβT

b
βγT

a
γδT

b
δκ(2π)−4ωIb, with

Ib ≡
∫

M
d2ωq

∫

M
d2ωk γµS(p− q)γνS(p− q − k)γρS(p− k)γσ Gµρ(q)Gνσ(k).

Spider diagram: g4fabcT a
αβT

b
βγT

c
γκ(2π)−4ωIc, with

Ic ≡
∫

M
d2ωq

∫

M
d2ωk γσS(p− q)γηS(p− k)γτ Gµσ(q)Gνη(k − q)Gρτ(k)

·[(k − 2q)ρgµν + (q − 2k)µgνρ + (q + k)νgµρ].

Gluon-bubble: 1
2
ig4fabcf bcdT a

αβT
d
βκ(2π)−4ωId, with

Id ≡
∫

M
d2ωq

∫

M
d2ωk γφS(p− q)γξ Gµφ(q)Gνη(k − q)Gρτ (k)Gσξ(q)

·[(k − 2q)ρgµν + (q − 2k)µgνρ + (q + k)νgµρ]

·[(k − 2q)τgση + (q − 2k)σgητ + (q + k)ηgστ ].

Quark-bubble: −ig4T a
αβT

a
γδT

b
δγT

b
βκ(2π)−4ωIe, with Ie ≡

∫

M
d2ωq

∫

M
d2ωk γµS(p− q)γνGµσ(q)

Trace[γσ(k/+mL)γρ(k/− q/+mL)]

[k2 −m2
L + iθ][(k − q)2 −m2

L + iθ]
Gρν(q),

(7)
where mL is the rest mass of the quark in the inner loop of Figure 1e.
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The first step in the evaluation of integrals Ia to Id is to substitute for S and G
from equations (2) and (3), and expand the numerator of each integrand into a sum
of products. In order to avoid terms whose integrals diverge as q → 0, the quark-
bubble integral Ie will be handled differently from the other integrals, as discussed
in Section 3.2.

Before integrating, we simplify the integrals by applying Wick rotations. This
procedure is valid because both Feynman’s iθ prescription as well as the n∗

µ-prescription
lead to poles in the second and fourth quadrants only. In this way, the integral (4),
for instance, becomes

δακΣ1(p) =
−ig2T a

αβT
a
βκ

(2π)2ω

∫

E
d2ωq

γµ(p/− q/−m)γν

[(p− q)2 +m2] q2

(
δµν −

nµqν + qµnν

n·q

)
,

where µ, ν = 1 . . . 4, q0 = iq4, p0 = ip4, n0 = in4, γ
0 = iγ4, and

∫
E denotes

integration over the Euclidean space spanned by q1 . . . q4.

2.3 Expansion, Reduction, Transformation, and Tadpoles

From the Feynman rules, we see that Green functions in general are integrals of
rational functions of the loop momenta. For integrals Ia to Id above, it would
appear that some terms in the numerators of the integrands could have degrees as
high as 11 in q and k together (after up to four applications of the n∗

µ-prescription
(5)). Fortunately, however, we may reduce the maximum degree to five, and in most
cases to three, by means of cancellations between terms within each integral, and
between numerator and denominator factors within many of the terms. Because of
the large number of terms involved, some computer assistance is advantageous.

Expanding the numerator of each integrand into a sum of products, and then
following the procedure outlined in paper (I), we obtain a list of well over 100 distinct
terms to be integrated. Fortunately, we can shorten this list still further by applying
transformations, such as k → q − k, q → q + k, and/or q ↔ k, to selected terms.
The transformation q → q + k, for instance, yields

n/

(n·q − n·k)(q − k)2[(p− q)2 +m2]k2
→

n/

n·q q2[(p− q − k)2 +m2]k2
,

where the expression on the right just happens to be already on the list of terms to
be integrated. Notice that the factor (n ·q − n ·k) can thus be eliminated from all
denominators.

Having carried out these various cancellations and transformations, we find that
some of the integrands factor into separate q and k dependent parts. In some cases,
one of these two one-loop integrals vanishes, since its integrand is antisymmetric
under q → −q or k → −k. In many other cases, one of the one-loop integrals
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corresponds to a massless tadpole, and likewise vanishes in the context of dimensional
regularization [18, 19].

2.4 Power Counting

For renormalization, we require only the divergent parts of integrals Ia to Ie, so we
shall drop all terms whose integrals can be shown by power counting to converge
when ω = 2. For a covariant gauge, Weinberg’s theorem [20, 15] tells us that a Feyn-
man integral is UV-convergent if its integrand, including the measure d4q d4k . . ., is
of negative degree with respect to every non-empty subset of the loop momenta
q, k, . . .. We have the same rule for the light-cone gauge, except that we must also

consider subsets that include only the “transverse” part – the part orthogonal to n
– of one or more of the loop momenta [11].

To illustrate power counting, consider the Euclidean-space integral

∫ ∫
n/ n·p d2ωq d2ωk

n·q[(p− q)2 +m2](q − k)2(n·q − n·k)[(p− k)2 +m2]
, (8)

arising from the spider diagram (Figure 1c). When ω = 2, the integrand has degree
−2 in q, −1 in k, and 0 in q and k combined. Hence, by the rule given above,
this integral may be divergent. As it turns out, however, this particular integral is
actually convergent, because the leading-order part of the integrand for large |q| and
|k| is antisymmetric under q3 ↔ q4, k3 ↔ k4 (we have taken n1 = n2 = n∗

1 = n∗
2 = 0

for simplicity, so that q‖µ = (0, 0, q3, q4) and k‖µ = (0, 0, k3, k4)). There are other
such “borderline” integrals which are convergent for the same reason.

In the Appendix we have summarized the divergent terms which remain to be
integrated, for each of the integrals Ia to Ie. We have also listed there the various
integrated divergent parts for each individual term. In the next section we shall
demonstrate how these results were obtained.

3 Integration Methods

Several different approaches to the evaluation of multi-loop Feynman integrals ap-
pear in the literature [6, 7, 21, 22, 23]; they will not be reviewed here. In most
methods, one begins by writing the denominator of the integrand as an integral,
using a parametrization formula. We shall use the formula known as Schwinger’s

representation:

1

F u
1 F

v
2 . . .

=
∫ ∞

0

αu−1
1 dα1

Γ(u)

∫ ∞

0

αv−1
2 dα2

Γ(v)
. . . exp

(
− α1F1 − α2F2 . . .

)
. (9)
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The factors F1, F2, . . . must have positive Real parts; hence, before using formula
(9), we apply the n∗

µ- prescription to any factors of n·q and n·k in the denominator,
perform Wick rotations, set θ to zero, and take the factor(s) n∗·n from Eq. (5) outside
of the integral. The component p4 of the external momentum is regarded as Real
until after integration has been completed.

3.1 The Nested Method

After parametrization, it is necessary to integrate over both the loop momenta and
the parameters. The question of the most suitable order for these integrations
naturally arises. To take advantage of known one-loop results, we might try the
nested method, in which we integrate first over one of the loop momenta (k, say),
then over the parameters associated with factors involving k, then over the other
momentum q, and finally over the remaining parameters.

As an example, consider the divergent Euclidean-space integral

I1 =
∫ ∫ n/ d2ωq d2ωk

n·q[(p− q)2 +m2][(p− q − k)2 +m2]k2
, (10)

arising from the overlapping and rainbow diagrams. Applying formula (9) to the
k-dependent factors only, we obtain

I1 =
∫
n/ d2ωq

n·q Q

∫ ∞

0
dα1

∫ ∞

0
dα2

∫
d2ωk exp

(
− α1[(p− q − k)2 +m2] − α2k

2
)
,

where Q ≡ (p− q)2 +m2. Next we change variables from α1, α2 to A ≡ α1 +α2 ,
x ≡ α1/A, and complete the square in the exponent to get

I1 =
∫
n/ d2ωq

n·q Q

∫ 1

0
dx
∫ ∞

0
A dA

∫
d2ωk exp

(
− A[(k − xp + xq)2 +H ]

)
, (11)

with H ≡ x
[
(1− x)(p− q)2 +m2

]
. The k and A integrations may then be carried

out with the help of the well-known Gaussian and Gamma integrals:

∫
exp (−Ar2) d2ωr =

(
π

A

)ω

, A > 0, (12)

and ∫ ∞

0
Ade−AH dA =

Γ(d+ 1)

Hd+1
, H > 0, Re d > −1, (13)

respectively, with rµ = kµ − x(p− q)µ in this case. Accordingly, we obtain

I1 = πωΓ(ǫ)
∫ n/ d2ωq

n·q Q

∫ 1

0
dxH−ǫ; ǫ ≡ 2 − ω. (14)

9



From power counting, we expect the k integral in Eq. (10) to be well defined only
if ω < 2. In fact, we required just this condition in order to complete the integration
(13) which produced the divergent factor Γ(ǫ) in Eq. (14). The q integral in Eq. (14)
also diverges as ǫ → 0, according to power counting, so altogether we expect I1
to have a double pole at ǫ = 0. This expectation will be confirmed by explicit
calculation.

Before we can complete the integration, we must decide how to deal with the
q-dependent factor H−ǫ in Eq. (14). Since we expect I1 to have a double pole at
ǫ = 0, and since we are only interested in finding the divergent parts, we might try
integrating only terms up to order ǫ from the exponential series

H−ǫ = 1 − ǫ lnH + 1
2
(ǫ lnH)2 − . . . , (15)

= 1 − ǫ ln x− ǫ ln
[
(1 − x)(p− q)2 +m2

]
+ 1

2
(ǫ lnx)2 + . . . , (16)

= x−ǫ +
[
(1 − x)(p− q)2 +m2

]−ǫ
− 1 + O(ǫ2). (17)

If we could drop the O(ǫ2) terms, we could immediately integrate over x, and then
complete the q integration from Eq. (14). Unfortunately, the series (15) cannot be
integrated term-by-term, since it does not converge uniformly with respect to q, as
explained in paper (I).

The convergence of series (15) is non-uniform partly because H goes to infinity
as |q| goes to infinity. One way of solving this problem is to factor out the large
|q| behaviour before using a series, provided we do so without either creating new
convergence problems, or generating terms that we cannot integrate. In the current
example, we can extract a factor of Q from H before using the exponential series,
so that Eqs. (15) to (17) become

H−ǫ = Q−ǫ



1 − ǫ ln
H

Q
+

1

2

[
ǫ ln

H

Q

]2

− . . .



 , (18)

= Q−ǫ
(

1 − ǫ ln x− ǫ ln

[
(1 − x)(p− q)2 +m2

Q

]
+

1

2
(ǫ ln x)2 + . . .

)
,

= Q−ǫ


x−ǫ +

[
(1 − x)(p− q)2 +m2

Q

]−ǫ
− 1 + O(ǫ2)


 , (19)

with Q ≡ (p−q)2+m2. Convergence of this new series remains uniform as |q| → ∞,
except near x = 0 and x = 1. Fortunately, however, these remaining non-uniformities
cause no trouble, provided we integrate Eq. (19) only. At x = 0, the x−ǫ term
in this equation gives the correct contribution to the pole parts of I1, while the
contributions from the second and third terms in parentheses cancel. Similarly, as
x → 1, |q| → ∞, the second term in parentheses gives the correct contribution,
while the contributions from the first and third terms cancel. (One may check these
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claims by using expansions in powers of x near x = 0, and 1−x near x = 1.) Hence,
the O(ǫ2) term in Eq. (19) does not contribute to the pole parts of I1.

Integrating Eq. (19) over x, and substituting into Eq. (14), we find that

I1 =
πωΓ(ǫ)

1 − ǫ

∫
n/ d2ωq

n·q Q

[
1 + ǫ

Qǫ
+
m2[Q−ǫ − (m2)−ǫ]

(p− q)2

]
+ finite, (20)

where “finite” refers to terms which do not diverge as ǫ → 0. By power counting,
we see that the q integration in Eq. (20) diverges only for the first term in square
brackets. Because of the divergent factor Γ(ǫ) in front, we need both the divergent
and finite parts of the q integral, but not parts of order ǫ. Hence, we may set ǫ = 0
in the convergent second term, causing this term to vanish (fortuitously). Applying
the n∗

µ-prescription (5), along with the parametrization formula (9), we obtain

I1 =
2n/πωΓ(ǫ)(1 + ǫ)

n∗·n (1 − ǫ)

∫ ∞

0
dα1

∫ ∞

0

αǫ2 dα2

Γ(1 + ǫ)

∫
n∗·q e−T d2ωq + finite,

=
2n/πω(1 + ǫ)

n∗·n ǫ(1 − ǫ)

∫ 1

0
yǫdy

∫ ∞

0
A1+ǫdA

∫
n∗·(r + yp‖ + p⊥) e−T d2ωr + finite, (21)

where A ≡ α1 + α2, y ≡ α2/A, rµ ≡ qµ − yp‖µ − p⊥µ, and

T ≡ α1q
2
‖ + α2Q = A

[
q2
‖ + yq2

⊥ − 2yp·q+ y(p2 +m2)
]
,

= A
[
r2
‖ + yr2

⊥ + y(1 − y)p2
‖ + ym2

]
.

The 4-vectors p‖µ, p⊥µ, and so on, are defined in Eqs. (6). Note that n∗·p‖ = n∗·p,
p·q = p‖ ·q‖ + p⊥ ·q⊥, (p‖)⊥ = 0, etc., for any 4-vectors pµ and qµ.

Since T is an even function of r, we may drop the term with n∗· r from the
integrand of Eq. (21). We also drop n∗·p⊥, which is equal to zero, and factor the r
integral into independent r‖ and r⊥ parts:

∫
y n∗·p‖ e

−T d2ωr = y n∗·p exp
(
−Ay

[
(1 − y)p2

‖ +m2
])

×
∫

exp (−Ar2
‖) d2r‖

∫
exp (−Ayr2

⊥) d2ω−2r⊥.

The integrations over r, A, and y are then easily completed with the help of formulas
(12) and (13).

3.2 The Quark-Bubble Integral Ie

Let us try the nested method on the integral in Eq. (7). Since the inner loop of
Figure 1e involves no gluons, the integral over k of the k-dependent factors in (7) is
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just the standard covariant-gauge result [15]:
∫

M
d2ωk

Trace[γσ(k/+mL)γρ(k/− q/+mL)]

[k2 −m2
L + iθ][(k − q)2 −m2

L + iθ]
=

8iπωΓ(ǫ)(q2gσρ − qσqρ)
∫ 1

0
(x− x2)[m2

L − (x− x2)q2]−ǫdx, (22)

with θ > 0 and ǫ ≡ 2 − ω as before. The above equation is exact: no terms of
order ǫ , or higher, have been omitted. (To verify this claim, one may use the trace
theorems [15] to obtain
Trace [γσ(k/+mL)γρ(k/− q/+mL)] = 4gσρ(m2

L − k2 − q·k) + 8kσkρ − 4qσkρ − 4kσqρ,
and then carry out the k integration using some of the formulas and methods from
Subsection 3.1.)

Substituting the right-hand sides of Eqs. (22) and (2) into Eq. (7), we get

Ie = 8iπωΓ(ǫ)
∫

M
d2ωq

γµ(p/− q/+m)γν

(p− q)2 −m2 + iθ
Dµν(q)

∫ 1

0

(x− x2) dx

[m2
L − (x− x2)q2]ǫ

, (23)

where Dµν(q) ≡ Gµσ(q)(q2gσρ−qσqρ)Gρν(q), and m is the rest mass of the external

quark in Figure 1e. It follows from Eq. (3) that Dµν(q) → −Gµν(q) as θ, λ →
0, so that Ie is proportional to the one-loop integral (4), except for the extra x
integral within the q integral. We note that there is only one factor of q2 now in the
denominator (in Dµν(q)), thereby preventing the integral from diverging as q → 0.

After Wick rotation, Eq. (23) becomes

Ie = 8πωΓ(ǫ)
∫

E
d2ωq

γµ(p/− q/−m)γν

[(p− q)2 +m2] q2

(
δµν −

nµqν + qµnν

n·q

)∫ 1

0

(x− x2)1−ǫ

Lǫ
dx,

(24)
with L ≡ q2 +m2

L(x− x2)−1. As in the example of Eq. (10), power counting tells
us that integral (24) is well defined only if ǫ > 0. Under this condition, (q2)−ǫ is a
decreasing, concave-up function of q2 (for q2 > 0), from which it follows that

0 < (q2)−ǫ − L−ǫ < (q2 − L)
d

d(q2)

[
(q2)−ǫ

]
=

ǫm2
L

x− x2
(q2)−ǫ−1. (25)

Using this inequality, we can show by power counting that the difference between
integral (24), and the same integral with L replaced by q2, remains finite as ǫ →
0. Since we are merely interested in the divergent parts of Ie, we may make this
replacement and pull the factor (q2)−ǫ out of the x integral. Integrating over x with
the help of the formula

∫ 1

0
xc(1 − x)ddx =

Γ(c+ 1)Γ(d+ 1)

Γ(c+ d+ 2)
, Re c,Re d > −1, (26)

and completing the q integration, we get the desired result. Notice that the divergent
parts of Ie will be independent of the mass of the quark in the inner loop, as mL

enters Eq. (24) only by way of L.

12



3.3 Review of the Matrix Method

As seen in the preceding examples, in the nested method one tries to modify the inte-
grand between the first and second momentum integrations, in a way that simplifies
the final integration without changing the divergent parts of the result. Particular
care must be taken with regard to the behaviour of the integrand near boundaries
where the final integration diverges, such as |q| → ∞, x → 0 in the examples. The
greater the degree of divergence, the more closely the “simplified” integrand must
match the exact one. This requirement becomes more and more challenging as the
number of α parameters increases.

For integrals such as

I2 =
∫

E

∫

E

q/ d2ωq d2ωk

n·q [(p− q)2 +m2] [(p− q − k)2 +m2] [(p− k)2 +m2] k2
, (27)

in which both q and k appear in more than two denominator factors each, it is
easier to complete all momentum integrations before doing any parameter integra-
tions. This approach is called the matrix method [4, 5]. Momentum integrations
are straightforward with this method, because the combined 4ω-dimensional mo-
mentum integral can be expressed as a derivative of a product of one-dimensional
Gaussian integrals. In view of the importance of the matrix method for multi-loop
integrals, we shall briefly review its main features.

After Wick rotation and application of the n∗
µ-prescription, a two-loop light-

cone integral takes the form of an integral over q and k of a polynomial P (q, k),
say, divided by some non-negative quadratic factors F1, F2, . . .. Application of the
parametrization formula (9) then yields

∫

E
d2ωq

∫

E
d2ωk

P (q, k)

F1F2 . . .
=

∫ ∞

0
dα1

∫ ∞

0
dα2 . . . J [P (q, k)]; (28)

J [P (q, k)] ≡
∫

E
d2ωq

∫

E
d2ωk P (q, k) exp

(
− α1F1 − α2F2 . . .

)
. (29)

Since the exponent is quadratic in q and k, we can rewrite Eq. (29) in the form

J [P (q, k)] =
∫

E
d4ωzP (q, k) exp

(
− zMz⊤ + 2B·z − C

)
, (30)

where M is a Real 4ω×4ω matrix, B and z are Real 4ω-vectors, z ≡ (k4, q4, k3, q3,
. . .), ⊤ denotes transpose, and the components of M, B, and C are functions of
α1, α2 . . ., but not of q or k.

For any given set of F factors, one may obtain explicit expressions for the com-
ponents of M, B, and C by expressing the exponents from Eqs. (29) and (30) in terms
of the components of q and k, and then equating corresponding coefficients. For the

13



two-loop integrals of the Appendix, with q‖ = (0, 0, q3, q4) and k‖ = (0, 0, k3, k4) as
before, we find that

M = A




a tG

tG 1 − a

a tG

tG 1 − a

h tG

tG λ
. . .




, B⊤ = A




bp4

βp4

bp3

βp3

bp2

βp2

...




, (31)

where the dots in M denote 2ω − 3 repetitions of the third 2×2 sub-matrix, and
A(1 − a), Aλ,Aβ,AG,Ab, Ah, and Aa are the sums of the α parameters whose
corresponding F factors include q2

‖, q2
⊥, −2p·q, 2tq ·k, −2p·k, k2

⊥, k2
‖,

respectively. For example, if we label the denominator factors in integral (27) as F1

to F5 from left to right (after application of prescription (5), with 2n∗·q/n∗·n taken
into P ), we have for this integral

1 − a = (α1 + α2 + α3)/A, λ = β = (α2 + α3)/A, t = 1,

h = a = (α3 + α4 + α5)/A, b = (α3 + α4)/A, G = α3/A,





(32)

C = (α2 + α3 + α4)(p
2 +m2) = A(b+ λ−G)(p2 +m2). (33)

The equations for a and 1 − a tell us that A = α1 + α2 + 2α3 + α4 + α5.

Since the matrix M is to be multiplied by z on both sides, it may always be
constructed symmetrically. Accordingly, there exists a matrix R such that RMR⊤ is
diagonal and R⊤R = 1. Defining a new vector y so that z = yR + BM−1, and taking
P = 1, we find that Eq. (30) becomes

J [1] = exp
(
BM−1B⊤ − C

) ∫

E
|det R| d4ωy exp

(
− yRMR⊤y⊤

)
. (34)

Since the integral in this equation is just a product of 4ω one-dimensional Gaussian
integrals, we may use formula (12), along with |det R| = 1 and

∏
i(RMR⊤)ii =

det(RMR⊤) = det M, to get

J [1] = π2ω(det M)−1/2 exp
(
BM−1B⊤ − C

)
. (35)

Notice that we never actually need to construct R. To find J [P ] for general P (q, k),
we differentiate Eq. (30) partially with respect to Bi to obtain ∂J [P ]/∂Bi = 2J [ziP ],
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and then apply this formula repeatedly to Eq. (35) to get

J [zi] = TiJ [1],

J [zizj ] =
[
TiTj + (1

2
M−1)ij

]
J [1],

J [zizjzk] =
[
TiTjTk + Ti(

1
2
M−1)jk + Tj(

1
2
M−1)ki + Tk(

1
2
M−1)ij

]
J [1],

...






(36)

where T ≡ BM−1 ≡ (r4, s4, r3, s3, . . . ). (37)

Since the momentum integral J [P ] is a linear functional of P , and z ≡ (k4, q4, k3, q3,
. . .), we can use the above equations to find J [P ] for any polynomial P (q, k).

In order to derive the two-loop integrals summarized in the Appendix, we sub-
stitute from Eqs. (31) into Eqs. (35) to (37) to obtain the following relations:

J [kµ] = rµJ [1], J [n∗·q kµ] =

(
n∗·s rµ −

Gn∗
µ

2AD‖

)
J [1],

J [qµ] = sµJ [1], J [n∗·q qµ] =

(
n∗·s sµ +

an∗
µ

2AD‖

)
J [1], (38)

J [n∗·q n·k kµ] =

(
n∗·s n·r rµ +

βn∗·pnµ −Gn∗·n(r + r‖)µ

2AD‖

)
J [1],

and so on, where J [1] =
(
π

A

)2ω e−AH

D‖D
ω−1
⊥

, (39)

rµ = [(1 − a)b−Gβ]
p‖µ
D‖

+ (λb−Gβ)
p⊥µ

D⊥
, (40)

sµ = (aβ −Gb)
p‖µ
D‖

+ (hβ −Gb)
p⊥µ

D⊥

, (41)

H ≡
C − BM−1B⊤

A
=

C

A
− (br + βs)·p, (42)

D‖ ≡ a(1 − a) −G2, D⊥ ≡ λh−G2. (43)

From the definitions of the new parameters following Eq. (31), one may show that
the sub-determinants D‖ and D⊥ satisfy D‖ ≥ 0, D⊥ ≥ 0 for all allowed values of
a, λ, h, and G, thereby justifying our use of formula (12) in the derivation of Eq. (35).

For the integral (27), the polynomial P [q, k] is given by P = 2n∗·qq//n∗·n. Since
h = a and β = λ from Eqs. (32), it follows from Eqs. (38), (39), (41), (42), and (33)
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that

J [P ] =
2

n∗·n

[
n∗·p

(aλ−Gb)2

D‖

(
p/‖
D‖

+
p/⊥
D⊥

)
+

a n/∗

2AD‖

]
π2ωe−AH

A2ωD‖D
ω−1
⊥

; (44)

H = (b+ λ−G)(p2 +m2) − (br + λs)·p. (45)

3.4 Parameter Integration for the Matrix Method

Once J [P ] is known for a particular integral, we must complete the parameter
integrations in Eq. (28). For the two-loop integrals listed in the Appendix, we begin
these integrations by changing variables from α1, α2, . . . to the applicable subset of
the new parameters λ, β,G, b, h, a and A, defined after Eq. (31). For the sample
integral (27), we find from Eqs. (32) that

∫ ∞

0
dα1

∫ ∞

0
dα2 . . . J =

∫ 1/2

0
dG

∫ 1−G

G
da
∫ 1−a

G
dλ
∫ a

G
db
∫ ∞

0
JA4dA. (46)

The integration ranges of the “finite” parameters λ, β,G, b, h, and a depend on which
F factors are present in the original integral. For instance, if the factor containing
q+k in Eq. (27) did not also contain p, the b integration in Eq. (46) would run from
0 to a−G, rather than from G to a. In the event of a repeated F factor, there will
be an additional finite parameter which can be integrated out immediately, since J
will not depend on it.

We see from Eqs. (43) and (45) thatD‖, D⊥, andH are independent of A, so that
the A integration in Eq. (46) is straightforward. Applying formula (13) to Eq. (44),
we obtain

∫ ∞

0
J [P ]A4dA =

π2ω

n∗·n

[
Γ(1 + 2ǫ)J1 + Γ(2ǫ)J0

]
; ǫ ≡ 2 − ω, (47)

where

J1 =
2n∗·p (aλ−Gb)2

D2
‖D

1−ǫ
⊥ H1+2ǫ

(
p/‖
D‖

+
p/⊥
D⊥

)
, J0 =

n/∗aH−2ǫ

D2
‖D

1−ǫ
⊥

. (48)

Note that the use of formula (13) requires H > 0. We can see that this requirement
is satisfied in general by examining the way in which H was constructed: since the
F factors and α parameters in Eq. (28) are non-negative, we find that the exponents
in (29) and (30) are ≤ 0 for all values of q and k. Consequently, the sum of the
exponents in Eq. (34) is ≤ 0 for all values of y. Taking y = 0, and noting that A is
just a sum of α parameters, we see that H in Eq. (42) is ≥ 0 for all allowed values
of the old or new parameters. Furthermore, since rµ and sµ are independent of the
quark mass m, one can deduce from Eq. (45) that H = 0 only if b + λ − G = 0
(m 6= 0). We emphasize that the relationship b+ λ− G = 0 applies specifically to
the integral (27).
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The presence of the divergent factor Γ(2ǫ) in Eq. (47) reflects the UV-divergence
of integral (27) with respect to q and k combined. Additional divergences, known
as subdivergences, may be found when we complete the remaining integrations from
Eq. (46), because J0 and J1 go to infinity at the boundaries of the integration region
where a → 0 and a→ 1 (corresponding to |k| → ∞ and |q| → ∞, respectively). In
the current example, each of these boundaries has three fewer dimensions than the
full finite-parameter space, because from the limits of integration in (46) it follows
that

a ≥ b ≥ G ≥ 0 and 1 − a ≥ λ ≥ G ≥ 0. (49)

Thus, near a = 1, for instance, we could transform dGdλ to (1 − a)2dxdy (with
x and y being finite parameters such that λ = x(1 − a) and G = y(1 − a)). A
subdivergence can therefore occur at a = 1 only if the integrand J0 or J1 diverges
there at least as fast as (1 − a)−3.

From Eqs. (43), (48), and (49), we find that D‖, D⊥ → 0 linearly as a→ 1, while
the numerator of J1 goes to zero quadratically, and H remains positive unless b→ 0
as well (assuming m 6= 0, as discussed above). Thus, we find that J0 is of order
(1 − a)ǫ−3 near a = 1, b 6= 0, while J1 is of order (1 − a)ǫ−2 there. Hence, by the
criterion given above, the integral of J0 over the finite parameters diverges as a→ 1
(and ǫ→ 0), while the integral of J1 does not. Similar analyses at other boundaries
of the integration region (including the case a = 1, b = 0) show that there are no
other subdivergences in this example. Since we are only interested in finding the
divergent parts of I2, and since J1 gives no subdivergences and is not multiplied by
a divergent Gamma function in Eq. (47), we may drop J1.

Due to the factor Γ(2ǫ) in Eq. (47), the subdivergence in the integral of J0 will
contribute a double pole to I2, while the finite part of the same integral will con-
tribute to the single pole. The factor H−2ǫ in Eq. (48) complicates the integration
of J0, but some simplification is possible because this factor affects the pole parts
of I2 only by way of the subdivergence at a = 1. To begin the simplification, we
rewrite H−2ǫ in (48) as 1 + (H−2ǫ − 1), and then expand the factors, multiplying
the term (H−2ǫ − 1), in powers of 1 − a, λ, and G, using the definitions for D‖ and
D⊥ from Eq. (43). In this fashion we obtain

J0 =
n/∗a

D2
‖D

1−ǫ
⊥

+
n/∗(H−2ǫ − 1)

(1 − a)2λ1−ǫ

[
1 + O(1 − a, λ,G)

]
. (50)

By counting powers of 1−a, λ, and G, we see that the integral of the term involving
(H−2ǫ − 1)O(1 − a, λ,G) has no subdivergence; to find its finite part we therefore
can set ǫ = 0 in this term (which happens to make it vanish). Accordingly, we may
replace J0 by Ĵ0(H),

Ĵ0(H) ≡
n/∗a

D2
‖D

1−ǫ
⊥

+
n/∗(H−2ǫ − 1)

(1 − a)2λ1−ǫ , (51)
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without affecting the divergent parts of I2.

The next step is to replace H in Eq. (51) by

H1 ≡ lim
a→1

H = b(p2 +m2) − b2p2,

where the result on the right follows from Eqs. (45), (40), (43), (49), and from the
equality β = λ in Eqs. (32). To justify this replacement, we use the same kind
of reasoning that led to the inequality (25); in the present case, an appropriate
inequality is given by

0 ≤ |H−2ǫ −H−2ǫ
1 | ≤ 2ǫ|H −H1| (H

−2ǫ−1 +H−2ǫ−1
1 ),

which holds for all allowed values of the parameters. Exploiting this new inequality,
and noting that |H−H1| goes to zero as a→ 1, and that both H and H1 go to zero
(linearly) only when b→ 0, we can show that the integral of Ĵ0(H) − Ĵ0(H1) , over
the finite parameters, has no subdivergence and vanishes when ǫ→ 0. In summary,
we can replace H by H1 in Eq. (51) without affecting the divergent parts of I2.

Making this replacement, and integrating over b in accordance with Eq. (46), we
obtain

∫ a

G
Ĵ0(H1)db =

n/∗a(a−G)

D2
‖D

1−ǫ
⊥

+
n/∗λǫ−1

(1 − a)2

[∫ 1

0
−
∫ G

0
−
∫ 1

a

]
(H−2ǫ

1 − 1)db. (52)

As a → 1, the ranges of the second and third integrals in square brackets shrink
to points, so that these terms contribute no subdivergences to the total integral
over the remaining parameters. Hence, in the derivation of the finite parts of the
integrals of these terms, we are allowed to set ǫ = 0 in their integrand (causing it to
vanish). To facilitate the remaining b integration in Eq. (52), we shall express H−2ǫ

1

in the form (cf. Eq. (17)),

H−2ǫ
1 = [b(p2 +m2) − b2p2]−2ǫ = (p2 +m2 − bp2)−2ǫ + b−2ǫ − 1 + O(ǫ2).

It now remains to integrate the factor multiplying the b integral in Eq. (52) over
λ, a, and G, in accordance with Eq. (46). But this task is easy: since the b integral
is of order ǫ, only the divergent part of the integral over λ, a, and G is needed.

Finally, we must also integrate the first term on the right-hand side of Eq. (52)
over λ, a, and G, again in accordance with Eq. (46). Because of the factor Γ(2ǫ) in
Eq. (47), both the divergent and finite parts of this triple integral will be needed. We
begin the integration process by defining the new variables x = D⊥/a

2, y = D‖/a
2,

and v = G/a, so that

∫ 1/2

0
dG

∫ 1−G

G
da
∫ 1−a

G
dλ
a(a−G)

D2
‖D

1−ǫ
⊥

=
∫ 1

0
dv
∫ ∞

v−v2

dy
∫ y

v−v2

a2ǫ(1 − v)

y2 x1−ǫ dx.

18



From the definitions of y, v, and D‖, we find that a2ǫ = (y + v2 + 1)−2ǫ. But
this factor can be simplified because it affects the divergent and finite parts of the
integral only at subdivergences. The subdivergence at a = 1 now manifests itself at
v = y = x = 0. Near this point, we have

(y + v2 + 1)−2ǫ = 1 − 2ǫ(y + v2) + ǫ(1 + 2ǫ)(y + v2)2 − . . . . (53)

Only the first term of this series gives a subdivergence, so we may set ǫ = 0 in the
other terms (causing them to vanish, as usual). Away from the subdivergence, the
integral is finite, so we can take ǫ = 0 in that region as well. Thus, in the current
example, the factor a2ǫ may be replaced by 1. The integrations over x, y, and v
pose no further problems.

For a subdivergence at a = 0, we would use

(y + v2 + 1)−2ǫ = y−2ǫ
[
1 − 2ǫ(v2 + 1)/y + ǫ(1 + 2ǫ)(v2 + 1)2/y2 − . . .

]
,

valid for large y. If the subdivergence comes only from the first term in this series,
then a2ǫ may be replaced by y−2ǫ.

3.5 Reduction of Subdivergences

The subdivergence in integral (27) is of the mildest possible nature; that is, J0 goes
to infinity only just fast enough to make the finite-parameter integral diverge as
a → 1 and ǫ → 0. For this reason, we were able to drop the O(1 − a) term in
Eq. (50), replace H by H1, drop the last two integrals in Eq. (52), and drop all but
the first term of series (53). For an integral with a more severe subdivergence, it
may be helpful to begin with a partial calculation by the nested method, thereby
reducing the degree of divergence with respect to one of the loop momenta before
applying the full matrix method.

A good example is the Euclidean-space integral

I3 =
∫ ∫

Pµν(q, n, p) k
µkν d2ωq d2ωk

[(q − k)2 +m2] [k2 +m2]F3(q)F4(q) . . .
, (54)

in which Pµν and F3, F4, . . . do not depend on k. Because of the quadratic subdi-
vergence as |k| → ∞, a direct application of the matrix method would lead to a
finite-parameter integral proportional to

∫
aǫ−2da near a = 0 (after all parameters

except a had been integrated out). To avoid having to deal with such a severe sub-
divergence, we proceed in the spirit of Eq. (11) by parametrizing the k-dependent
denominator factors only, to get

I3 =
∫
Pµνd

2ωq

F3F4 . . .

∫ 1

0
dv
∫ ∞

0
AY [kµkν ]dA, (55)
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where
Y [f(k)] ≡

∫
d2ωk f(k) exp

(
−A[k2 − 2vq ·k + vq2 +m2]

)
. (56)

Since Eq. (56) has the same form as Eq. (30) (with z = k, M = A, B = Avq, and
C = A(vq2 +m2)), application of Eqs. (35) and (36) yields

Y [1] =
(
π

A

)ω

e−AL, Y [kµkν ] =
[
v2qµqν + 1

2
δµνA−1

] ( π
A

)ω

e−AL,

with L ≡ (v − v2)q2 +m2. We next use formula (13) and Eq. (56) to obtain
∫ ∞

0
AY [kµkν ]dA =

πωΓ(ǫ)Eµν

Lǫ
= Eµν

∫ ∞

0
AY [1]dA =

∫ ∞

0
AY [Eµν ]dA, (57)

where Eµν ≡ v2qµqν + Lδµν/(2ǫ− 2).

From the left and right ends of Eq. (57), we see that I3 is unchanged if we
replace the k-dependent argument kµkν in Eq. (55) by the parameter-dependent
polynomial Eµν(q, v), thereby reducing the degree of the subdivergence. We then
cancel F factors, wherever possible, with factors in the terms of PµνE

µν , parametrize
the remaining F factors in accordance with formula (9), and finally complete the
integration by using either the matrix method or the nested method, whichever is
easier to apply.

4 Renormalization

Wherever a quark line appears in a physical process, any one of the diagrams of
Figure 1, as well as higher-loop diagrams, could also appear. Hence, the effective

quark propagator iδαβSeff is the sum of the bare propagator iδαβS from Subsection
2.1, plus contributions from self-energy processes with one loop, two loops, and so
on:

iSeff = iS + iSΣ1iS + iS
(
Σ1iSΣ1 + Σ2

)
iS + . . . , (58)

= iS + iS
(
Σ1 + Σ2 + . . .

)
iSeff , (59)

where Σ1 is the one-loop amputated Green function defined by Eq. (4), Σ2 is the
sum of the Green functions for the two-loop diagrams of Figures 1a to 1e, and so on.
(Σ2 will also include amplitudes of one-loop processes with counterterm vertices, as
explained below.) Since Σj is proportional to g2j, j = 1, 2, 3, . . ., the right-hand side
of (58) is a power series in g2. Similar series may be constructed for the effective
gluon propagator and vertex factors:

iδab(Geff)µν = iδabGµν + iGµσ

[
Πabσρ

(1) + Πabσρ
(2)

]
iGρν + . . . , (60)

(Γeff)aµ
αβ = igγµT a

αβ +
[
Γaµ

(1)αβ + Γaµ
(2)αβ

]
+ . . . , (61)
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etc., where Π(1), Π(2), Γ(1), and Γ(2) are the amputated Green functions of the one-
loop processes shown in Figures 2b to 2e. For the light-cone gauge, we have, in
Minkowski space [3, 11, 15],

Σ1(p) = −iα̃sCF

(
2m− p/+

n/n/∗p/+ p/n/∗n/

n∗·n

)
+ finite, (62)

Γaµ
(1)αβ = iα̃sgT

a
αβ

(
NC

2
− CF

) (
γµ + 2

n/ n∗µ − n/∗ nµ

n∗·n

)
+ finite, (63)

Γaµ
(2)αβ(k) = −iα̃sgT

a
αβ

NC

2

(
γµ − 2

n/ n∗µ + n/∗nµ

n∗·n
+ 4

n∗·k n/ nµ

n·k n∗·n

)
+ finite, (64)

Πabµν
(2) (q) = iα̃sδ

abNC

[
11

3

(
q2gµν − qµqν

)
+

2n·q

n∗·n

([
qµ −

q2nµ

n·q

] [
n∗ν −

n∗·q nν

n·q

]

+

[
qν −

q2nν

n·q

] [
n∗µ −

n∗·q nµ

n·q

])]
+ finite, (65)

Πabµν
(1) (q) = −iα̃sδ

ab 2

3
Nf

(
q2gµν − qµqν

)
+ finite; (66)

here, p, q, and k are external momenta as shown in Figure 2, CF = “color factor”
= 4

3
(δακCF ≡ T a

αβT
a
βκ), Nf = number of quark flavors = 6, NC = number of colors

= 3 (δadNC ≡ fabcf bcd), and

α̃s ≡ g2Γ(2 − ω)(4π)−ω

in the “modified minimal subtraction” scheme, MS.
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p

k

a)   Σ1(p) b)   Γ(1) c)   Γ(2)(k)

d)   Π(2)(q) e)    Π(1)(q)

q q

Figure 2: One-loop subgraphs of Figures 1a to 1e, with their amplitudes. Wavy
lines denote gluons, straight lines quarks. p, q, and k are four-momenta.

22



Most of the terms in Eqs. (58), (60), and (61) diverge as ω → 2. To make the
effective propagators and vertex factors finite, we modify the Lagrangian density (1)
in such a way that the bare propagators and vertex factors S, G, igγµ, etc. will be
replaced by renormalized propagators and vertex factors. For instance, if we let

m → m− δm and ψ → ψ +Nψ (67)

in Eq. (1), where N and δm are both of order g2, then the quark propagator in
Eq. (2) becomes

Sren(p) =
[
(1 + γ0N †γ0)(p/−m+ δm)(1 +N)

]−1
, (68)

= S(p) − S(p)
[
δm+ γ0N †γ0(p/−m) + (p/−m)N

]
S(p) + O(g4), (69)

where the iθ term has been suppressed for clarity. At the same time, we see from
Eq. (58) that in order to make Seff finite, we need to replace S by

Sren = S − iS
[
divergent part of Σ1

]
S + O(g4) + . . .. (70)

Comparing Eqs. (69) and (70), substituting for Σ1 from Eq. (62), and noting that
n/† = n/∗ and γ0n/∗ = n/γ0, we find that we can eliminate the one-loop divergence
from the effective quark propagator by taking [11]

δm = 3mα̃sCF + O(g4) and N = α̃sCF

(
n/∗n/

n∗·n
−

1

2

)
+ O(g4). (71)

Similarly, to eliminate two-loop divergences from Seff , we will need to compute Σ2,
and so on.

The substitutions m→ m−δm and ψ → ψ+Nψ produce the necessary counter-

terms in the Lagrangian density (1). From Eq. (71) we see that the counterterms
involving N are noncovariant, but we may hide this noncovariance by absorbing the
factor (1 +N) into the normalization of the quark field ψ. Similar renormalizations
of the gluon fields Aa

µ lead to cancellation of the noncovariant divergences in the
effective gluon propagator and three- and four-gluon vertex corrections. Bassetto,
Dalbosco, and Soldati (BDS) have pointed out some time ago that noncovariant
divergences may be eliminated in this way from the effective light-cone propagators
and vertex factors, at all orders of perturbation theory [10, 11]. We shall verify this
claim explicitly for the case of the effective quark propagator at two-loop order.

4.1 One-loop Counterterm Subtractions

The use of renormalized propagators and vertex factors in place of S, G, igγµ,
etc. affects Seff through the Σ factors in Eq. (58), as well as through S directly,
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because the Σ factors involve amplitudes which depend on the propagators and
vertex factors through the Feynman rules. In accordance with standard procedure,
these “indirect” contributions to Seff are represented by subtraction diagrams, such
as those depicted in Figure 3. The diagrams of Figure 3 are specifically constructed
from those of Figs. 1a to 1e by collapsing the divergent one-loop subgraphs (shown
in Fig. 2) to the counterterm vertices denoted by × in Figure 3. In each case,
the counterterm vertex factor is minus the divergent part of the amplitude of the
corresponding subgraph. These amplitudes are given in Eqs. (62) to (66). The terms
proportional to nµ or nν in Eqs. (64) and (65) may be dropped (see Figs. 3c and 3d),
since they are orthogonal to the light-cone propagators of the gluons.

a) b)

Σ1 Γ(1) Γ(1)

X X X
+

c)

Γ(2) Γ(2)

X X
+

d) e)
Π(2) Π(1)

X X

+

Figure 3: One-loop subtraction diagrams. The vertex factors for “×” are minus

the divergent parts of the indicated one-loop amplitudes Σ1, Γ(1), etc.

X X
+

X X
++

Figure 4: One-particle-reducible quark self-energy diagrams. The vertex factor for
× is given by [− divergent part of Σ1.]

The one-loop amplitudes Σ1, Γ(1), Γ(2), Π(2), and Π(1) are of order g2, so that the
amplitudes of Figures 3a to 3e are all of order g4. These amplitudes belong, therefore,
to Σ2, along with the amplitudes of Figures 1a to 1e, of course. In principle, the
amplitudes of the one-particle-reducible diagrams (Figure 4) also contribute to Σ2,

24



but it is easy to see that the divergent parts of these amplitudes cancel completely
with one another, due to the factorizability of all four integrals.

All of the diagrams of Figures 3 and 1a to 1e contribute nonlocal divergences
to Σ2; however, the nonlocal contributions from Figs. 1a to 1e are exactly cancelled
by the nonlocal parts from the corresponding diagrams of Figure 3, as expected on
theoretical grounds [9, 23, 24].

4.2 Two-loop Counterterms

The divergent parts of the amplitudes for Figures 1a to 1e and 3a to 3e are shown
in Table 1, excluding the nonlocal divergent terms which cancel as noted above. To
find the local divergent part of the amplitude for a particular figure, one multiplies
the numbers in the applicable row of the table by the corresponding factors at the
top of the table, then adds the resulting terms together, and multiplies the sum by
the color factor at the right-hand end of the row. (We recall that ǫ ≡ 2 − ω, and
α̃s ≡ g2Γ(ǫ)(4π)−ω for modified minimal subtraction.) The divergent part of Σ2

is the sum of the results for all ten figures, as shown in the “total” section at the
bottom of the table.
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Table 1: Local divergent parts of the amplitudes for Figures 1a to 1e and 3a to 3e.
Each number is to be multiplied by the expressions at the top of its column and
right-hand end of its row. CF , NC , Nf , and α̃s are defined after Eq. (67). Columns
with 1 at the top give double-pole terms; columns with ǫ, single poles. Vectors are
in Minkowski space, and ǫ ≡ 2 − ω.

m︷ ︸︸ ︷
p/

︷ ︸︸ ︷

n∗·p n/

n∗·n︷ ︸︸ ︷

n·p n/∗

n∗·n︷ ︸︸ ︷
Figure 1 ǫ 1 ǫ 1 ǫ 1 ǫ

rainbow 1a –8 16 –3 –3
2

–6 –40 6 8 1
2
iα̃2

sC
2
F

3a 16 –24 6 2 12 24 –12 –8 1
2
iα̃2

sC
2
F

over- 1b 4 8 4 2 14 60 –6 –12 1
2
iα̃2

s(C
2
F − 1

2
NCCF )

lapping
3b –8 0 –8 –4 –28 –40 12 8 1

2
iα̃2

s(C
2
F − 1

2
NCCF )

spider 1c 4 –16 0 –2 –6 –20 –2 4 1
4
iα̃2

sNCCF

3c –8 0 0 –4 12 24 4 8 1
4
iα̃2

sNCCF

gluon- 1d –44
3

–124
9

–10
3

–47
9

16
3

284
9

32
3

292
9

1
4
iα̃2

sNCCF

bubble
3d 88

3
0 20

3
44
3

–32
3

–104
3

–64
3

–88
3

1
4
iα̃2

sNCCF

quark- 1e 8
3

40
9

4
3

14
9

8
3

64
9

–8
3

–64
9

1
4
iα̃2

sNfCF

bubble
3e –16

3
0 –8

3
–8

3
–16

3
–16

3
16
3

16
3

1
4
iα̃2

sNfCF

–8
3

40
9

–4
3

–10
9

–8
3

16
9

8
3

–16
9

1
4
iα̃2

sNfCF

total





44
3

–340
9

22
3

49
9

44
3

–172
9

–44
3

172
9

1
4
iα̃2

sNCCF

(Σ2) 4 0 –1 –3
2

–8 4 0 –4 1
2
iα̃2

sC
2
F

A knowledge of the divergent part of Σ2 enables us to verify explicitly that
the effective quark propagator may indeed be rendered finite at two-loop order by
means of the substitutions m→ m−δm and ψ → ψ+Nψ , as implied by Bassetto,
Dalbosco and Soldati. The O(α̃s) parts of N and δm are already shown in Eqs. (71).
Multiplying Eq. (59) by S−1 from the left and by (Seff)−1 from the right, then solving
for (Seff)−1 and replacing S by Sren, we get

(Seff)−1 = (Sren)
−1 − iΣ1 − iΣ2 − . . .. (72)

To keep Seff finite at two-loop order, we must ensure that the divergent parts of
Σ2 in Eq. (72) are cancelled by terms from (Sren)

−1; the latter depends on N and
δm, as seen from Eq. (68). (The divergent parts of Σ1 cancel already, thanks to the
particular choice of the O(α̃s) parts of N and δm.) Inverting and expanding the
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right-hand side of (68), we obtain

(Sren)
−1 = S−1 + δm+ (δm−m)

(
N∗ +N +N∗N

)
+N∗p/N +N∗p/+ p/N, (73)

where N∗ ≡ γ0N †γ0. Comparison of the terms of this expansion with the expres-
sions at the tops of the columns in Table 1 suggests that the O(α̃2

s) parts of N and
δm should be similar in form to the O(α̃s) parts shown in Eqs. (71). Therefore, let
us try the ansatz

δm = 3mα̃sCF +mα̃2
sCFW + O(α̃3

s), (74)

and

N = α̃sCF

(
n/∗n/

n∗·n
−

1

2

)
+ α̃2

sCF

(
X
n/∗n/

n∗·n
+ Y

)
+ O(α̃3

s), (75)

and then see if we can find expressions for W, X, and Y that will cause all O(α̃2
s)

terms in Eq. (72) to cancel.

Substituting from Eqs. (74) and (75) into Eq. (73), and applying the light-cone
condition n2 = n∗2 = 0, we find that the noncovariant O(α̃2

s) part of (Sren)
−1 reads

α̃2
sCF

[
(2X − CF )

n∗·p n/− n·p n/∗

n∗·n
+ 4CF

n∗·p n/

n∗·n

]
. (76)

Seff can be finite only if there is some value of X that makes expression (76) match
the noncovariant, divergent part of iΣ2. Such a match is possible, but only because
the coefficients under n∗·p n/ in the “total” part of Table 1 are the negatives of the
corresponding coefficients under n ·p n/∗, except for the last two double-pole coeffi-
cients in the last row. These last double-pole coefficients give rise to a term which
cancels with the last term in brackets in (76). This term in (76) derives purely from
the leading term of N , via the N∗p/N term in Eq. (73), so its coefficient cannot be
adjusted (unlike X) to make it cancel with some arbitrary term from iΣ2. Conse-
quently, the anti-symmetry between the coefficients of n∗·p n/ and n·p n/∗ in Σ2 must
be broken in exactly the way that we have found it to be broken, otherwise the BDS
scheme would have failed.

To complete our derivation of N and δm, having substituted from Eqs. (74) and
(75) into Eq. (73), we then substitute from Eq. (73) and Table 1 into Eq. (72), and
set the total of the O(α̃2

s) terms on the right to zero. In this way we find the following
expressions for W , X, and Y :

W =
Nf

4

(
4 −

10

3
ǫ
)

+
NC

4

(
−22 +

97

3
ǫ
)

+
CF

2

(
−9 +

3

2
ǫ
)
, (77)

X =
Nf

4

(
4

3
−

8

9
ǫ
)

+
NC

4

(
−

22

3
+

86

9
ǫ
)

+
CF

2
(1 − 2ǫ) , (78)

Y =
Nf

4

(
−

2

3
+

13

9
ǫ
)

+
NC

4

(
11

3
−

221

18
ǫ
)

+
CF

2

(
1

4
+

11

4
ǫ
)
. (79)
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Thus we have confirmed the claim of Bassetto, Dalbosco, and Soldati for the two-loop
quark self-energy function. It is also significant to realize that the mass counterterm
δm in the light-cone gauge, Eq. (74), is exactly the same as in the general linear
covariant gauge [22], at least up to two-loop order. This result is a reassuring
reflection of the gauge symmetry of QCD [25].

5 Conclusion

In this paper, we have evaluated the complete quark propagator to two-loop or-
der, and demonstrated for the first time its renormalizability in the noncovariant
light-cone gauge. The chief technical tool in this three-year project was the pow-
erful matrix integration technique which had been exploited in our first paper [4]
to evaluate the divergent part of the overlapping self-energy function (see Fig. 1b
in the present article). Now, three years later, we have finally succeeded in com-
puting, without approximation, the divergent parts of the four remaining two-loop
diagrams in the quark propagator, namely: the quark-bubble diagram (Fig. 1e), the
rainbow diagram (Fig. 1a), the spider diagram (Fig. 1c), and the gluon-bubble dia-
gram (Fig. 1d), along with their counterterm graphs, depicted in Figs. 3e, 3a, 3c and
3d, respectively.

Other technical tools, apart from the matrix method and a reliable computer
algebra program, included dimensional regularization, the n∗

µ-prescription for the
spurious poles of (q ·n)−1 (n2 = 0), as well as a detailed analysis of the boundary
singularities in five- and even six-dimensional parameter space.

The divergent part of the total two-loop correction Σ2 to the quark propagator
can be read off from Table 1, and has the form

Σ2 = iα̃2
s

{
C2

F

(
2m−

p/

2
− 4

n∗·p n/

n∗·n

)

+
(

11

3
NC −

2

3
Nf

)
CF

(
m+

1

2
p/+

n∗·p n/− n·p n/∗

n∗·n

)}

+ iα̃2
s ǫ

{
C2

F

(
−

3

4
p/+ 2

[
n∗·p n/− n·p n/∗

n∗·n

])

+
NCCF

9

(
−85m+

49

4
p/− 43

[
n∗·p n/− n·p n/∗

n∗·n

])

+
NfCF

9

(
10m−

5

2
p/+ 4

[
n∗·p n/− n·p n/∗

n∗·n

])}
, (80)

with α̃s ≡ g2Γ(ǫ)(4π)ǫ−2. The expression (80) has several noteworthy features:
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(i) The anti-symmetry between the coefficients of n∗·pn/ and n·pn/∗ (proportional to
α̃2

sC
2
F ) is identical to the anti-symmetry predicted by the Bassetto-Dalbosco-

Soldati renormalization scheme [10].

(ii) The divergent part of Σ2 is a local function of the external momentum p, even
off mass-shell, since all nonlocal divergent terms cancel exactly. Notice that
Σ2 contains both covariant and noncovariant components.

(iii) The structure of Σ2 implies the quark mass counterterm δm,

δm = 3mα̃s CF +mα̃2
s CF W + O(α̃3

s) , (81)

which is gauge-independent, as expected (W is given by Eq. (77)). It is both
interesting, and re-assuring from a calculational point of view, that the mass
counterterm in the noncovariant light-cone gauge is exactly the same as in the
general linear covariant gauge [22] – at least to two-loop order.

(iv) The factor N for the renormalization of the quark field ψ is likewise local,
albeit gauge-dependent:

N = α̃s CF

(
n/∗n/

n∗·n
−

1

2

)
+ α̃2

s CF

(
X
n/∗n/

n∗·n
− Y

)
+ O(α̃3

s) , (82)

with X and Y defined in Eqs. (78) and (79), respectively.

The cancellation of nonlocal divergences, the consistency of our results with the
Bassetto-Dalbosco-Soldati renormalization scheme, and the agreement between our
mass renormalization and the two-loop covariant result all serve to demonstrate the
reliability of the matrix integration method, as well as the validity, at two-loop order,
of the n∗

µ-prescription for the unphysical poles of the light-cone gauge propagator.

Since physically meaningful predictions can only be made with a theory whose
divergences have been subtracted consistently, our result will help to make the light-
cone gauge a more useful tool for practical two-loop calculations in QCD and other
non-Abelian theories. Complete two-loop renormalization will also allow the com-
putation of certain three-loop quantities, by means of renormalization group im-

provements [26].

Of course, the cancellation of the divergences in the effective quark propagator
is only part of the overall renormalization picture. In order to complete the two-
loop renormalization of light-cone QCD, we must also find the counterterms which
eliminate the two-loop divergences from the effective gluon propagator and vertex
factors. We should be able to find these new counterterms using the same methods
that have worked in this paper for the renormalization of the quark propagator.
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Appendix

The tables in this Appendix show one possible way in which the integrals Ia to
Ie from Subsection 2.2 may be broken down into simpler integrals. Specifically, if
we regard the columns of the tables as Cartesian vectors, then Ia, for example, is
the sum over all five tables of the dot product of the column headed by Ia (if any),
times the integral over q and k of the “integrand” column (plus some finite integrals
which have been discarded). Blank spaces in the tables denote zeros. For example,

Ic = 4
∫
n/n·p d2ωq d2ωk

nqQx o
+ 2ǫ

∫
n/ d2ωq d2ωk

n xKk
+ . . ..

The symbols in the denominators of the integrands are to be decoded as follows:

n → n·q, q → q2, Q → [(p− q)2 +m2], x → [(p− q − k)2 +m2],

o → n·k, k → k2, K → [(p− k)2 +m2], y → (q − k)2.

Note that all 4-vectors in this Appendix are in Euclidean space.

For each row of each table, the divergent part of the integral over q and k of the
expression in the “integrand” column is π2ωΓ(2ǫ)(m2 + p2)−2ǫ times the expression
in the final column, where ǫ ≡ 2 − ω, and

b ≡
m2

p2
ln

(
m2 + p2

m2

)
− 1, np ≡

n∗·p

n∗·n
n, n∗

p ≡
n·p

n∗·n
n∗,

c ≡

(
2 +

m2

p2

)
b, h/ ≡ (b− f)

(
p2n/

2n·p
− p/

)
− fn/∗p − n/p + un/,

f ≡
m2 + p2

‖

p2
⊥

ln


m

2 + p2

m2 + p2
‖


− 1, t ≡

fn∗·p

n∗·n
+

(b− f)p2

2n·p
,

aµ ≡
m2p⊥µ

p2
⊥

ln



m
2 + p2

m2 + p2
‖



 , p‖ = np + n∗
p, p⊥ ≡ p− p‖,

u ≡
(m2 + p2)d

2n·p
, d ≡ Li2

(
p2

m2 + p2

)
− Li2

(
p2
⊥

m2 + p2

)
,

v ≡
m2d

n·p
, Li2(z) ≡

∫ 1

0

ln τ dτ

τ − 1/z
(the “dilogarithm”).
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Ia Ib Ic integrand, R
(m2 + p2)2ǫ

π2ωΓ(2ǫ)
· div.part

∫
R d2ωq d2ωk

−4 m2n//nqQx k 2vn/

2 −4 4 n/n·p/nqQx o 4(1 + b+ d)n/p − 4(t+ u)n/

4 n/n·p/nqQ K o 4dn/p

−2ǫ 2ǫ 2ǫ n/ /n xKk ( 1
ǫ + 4 − 4b+ 2c)n/p

2 −2 − 2ǫ −2 n/ /n Qx k ( 2
ǫ + 4)n/p − 4tn/

−2ǫ −2ǫ n/ /n Q Kk ( 4
ǫ + 4 − 4b)n/p − 4tn/

−4 + 4ǫ −4 + 4ǫ n/q ·k/nqQ Kk ( 1
ǫ − c)n/p + (u− t)n/

4 − 4ǫ n/p·k/nqQx k (− 1
2ǫ −

1
2
)n/p + (t+ u− v)n/

4 n/p·q/nq xKk ( 1
ǫ + 3 − 2b)n/p

−4 n/p·q/n QxKk ( 1
ǫ + 3 − 2b)n/p

8 − 8ǫ −4 + 4ǫ −8 + 8ǫ k/n·k/nq xKk −5
8
p/+ 1

4
n/p −

3
4
n/∗p

−4 + 4ǫ k/n·k/n QxKk −3
8
p/+ ( 1

2ǫ + 3
4
)n/p − tn/− 3

4
n/∗p

4 − 4ǫ
(m2 + p2)k/n·k

nqQxKk
un/

−4ǫ 4ǫ 4ǫ q/n·k/nq xKk −1
4
p/+ ( 1

2ǫ + 1 − c)n/∗p

4 − 4ǫ q/n·k/nqQxK (− 1
4ǫ −

1
8

+ 1
2
c)p/+ 2h/+ ( 1

ǫ + 3)n/∗p

4 − 4ǫ −8 + 8ǫ −8 + 8ǫ q/n·k/nqQx k (− 1
4ǫ −

3
8

+ 1
2
c)p/+ h/+ ( 1

2ǫ + 3
2
)n/∗p

4 − 4ǫ 4 − 4ǫ q/n·k/nqQ Kk h/ + ( 1
ǫ + 1 − c)n/∗p

−16 + 8ǫ −4 + 4ǫ 24 − 8ǫ k/n·p/nq xKk −n/∗p

20 − 8ǫ k/n·p/n QxKk −n/∗p

−4 + 4ǫ −4 + 4ǫ k/n·p/nqQx k dp/− h/− ( 1
2ǫ + 3

2
)n/∗p

4 − 4ǫ 4 − 4ǫ k/n·p/nqQ Kk dp/

4ǫ 4 − 4ǫ 4 − 4ǫ q/n·p/nq xKk ( 1
ǫ + 3 − 2b)n/∗p

−4 q/n·p/n QxKk ( 1
ǫ + 3 − 2b)n/∗p

4 + 8ǫ q/n·p/nqQxK 2h/+ ( 1
ǫ + 3)n/∗p

−8 4 − 4ǫ 4 q/n·p/nqQx k 2h/+ ( 1
ǫ + 3)n/∗p

−4 + 4ǫ −4 + 4ǫ q/n·p/nqQ Kk 2h/+ ( 2
ǫ + 4 − 2b)n/∗p
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Ia Ib Ic integrand, R
(m2 + p2)2ǫ

π2ωΓ(2ǫ)
· div.part

∫
R

8ǫp/+ 8(1 − ǫ)p/+ −16ǫp/+
n·k/nq xKk −1

8(ǫ− 1)m 8(1 − ǫ)m 16(1 − ǫ)m

4m− 4p/ n·k/n QxKk −1

8(1 − ǫ)p/+ 8(1 − ǫ)p/+
n·k/nqQx k − 1

2ǫ −
3
2

+ b+ d
8(1 − ǫ)m 8(1 − ǫ)m

8(ǫ− 1)p/+ 8(ǫ− 1)p/+
n·k/nqQ Kk d

8(ǫ− 1)m 8(ǫ− 1)m

2(2 − ǫ)p/+ 4(ǫ− 1)p/+
1 /q xKk 1

ǫ + 3 − 2b
2(1 − ǫ)m 4ǫm

8(1 − ǫ)p/+
1 /qQxK 1

ǫ + 3 − 2b
8m

4ǫp/+ 2(2 − ǫ)p/+ 8(1 − ǫ)p/+
1 /qQx k 1

ǫ + 3 − 2b
8(ǫ− 1)m 2(1 − ǫ)m 8(1 − ǫ)m

2(ǫ− 2)p/+ −2(1 + ǫ)p/
1 /qQ Kk 2

ǫ + 4 − 4b
2(ǫ− 1)m −2ǫm

−4ǫ 4 − 4ǫ 4 − 4ǫ q/ /q xKk ( 1
4ǫ + 9

8
− b+ 1

2
c)p/

−8 + 8ǫ q/ / QxKk ( 3
4ǫ + 23

8
− 2b+ 1

2
c)p/

−8 + 4ǫ q/ /qQxK ( 1
2ǫ + 1

4
− c)p/

8 − 4ǫ −8 −8 + 4ǫ q/ /qQx k ( 1
2ǫ + 3

4
− c)p/

4 − 4ǫ 4 − 4ǫ q/ /qQ Kk ( 1
ǫ + 1 − b− c)p/

4 − 8ǫ q/ /qQQx −(2 − 2b+ 2c)p/

−8 + 8ǫ m2q/ /qQQx k (2 − 2b+ 2c)p/

−4 + 8ǫ m /qQQx −(2 + 2b)m

8 − 8ǫ m3/qQQx k (2 + 2b)m
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Ia Ib Ic integrand, R
(m2 + p2)2ǫ

π2ωΓ(2ǫ)
· div.part

∫
R

−4 −8 n/ n·p p·k/nqQx ko 2dn/p

2 + 4ǫ (m2 + p2)n//nqQxK 4un/

−2 −2 + 2ǫ −2 + 4ǫ (m2 + p2)n//nqQx k 4un/

4 − 4ǫ 4 − 4ǫ (m2 + p2)n//nqQ Kk 4un/

−4 + 4ǫ q/n·p/nqQQx −(2 + 2b)p/ + 2a/+ vn/

8 m2q/n·p/nqQQx k (2 + 2b)p/− 2a/− vn/

2 − 2ǫ n//n QQx 2
[
a·p− (b+ 1)p2

]
n//n·p

−4 m2n//n QQx k 2
[
(b+ 1)p2 − a·p

]
n//n·p

−2 + 2ǫ (m2 + p2)n//nqQQx 2
[
a·p− (b+ 1)p2

]
n//n·p

4 m2(m2 + p2)n//nqQQx k 2
[
(b+ 1)p2 − a·p

]
n//n·p

Id Ie integrand, R
(m2 + p2)2ǫ

π2ωΓ(2ǫ)
· div.part

∫
R

16ǫp/+ 4ǫp/+
1 /qQy k 1

ǫ + 3 − 2b
16(ǫ− 1)m 4(ǫ− 1)m

8(1 − ǫ)p/+ 8p/+
n·k(n·q− n·k)/nnqQy k 1

6ǫ + 4
9
− 1

3
b

8(1 − ǫ)m 8m

( 1
12ǫ + 11

36
)(n/∗p − p/)

16 − 16ǫ 16 p·k(k/n·q− q/n·k)/nqqQy k
+ 1

6
bp/+ 1

6
h/

8 − 8ǫ 8
(m2 + p2)n·k(q/n·k − k/n·q)

nnqqQy k
1
3
un/

33



Ic Id Ie integrand, R
(m2 + p2)2ǫ

π2ωΓ(2ǫ)
· div.part

∫
R d2ωq d2ωk

16 − 16ǫ mn·k/nq yKk m

−8 + 4ǫ mn·k/n QyKk m

−4 + 12ǫ 8 − 16ǫ 4 − 4ǫ q/ /qQy k ( 1
2ǫ + 1

4
− c)p/

−8 + 8ǫ −8 k/ /qQy k ( 1
4ǫ + 1

8
− 1

2
c)p/

4 −4 n/ /n yKk ( 1
ǫ − 2c)n/p

2 4 2 n/ /n Qy k ( 2
ǫ + 2)n/p − 4tn/

−2 − 4ǫ 4 n/ / Qy ko 2n/p

8 n/n·p/nqQy o −4(1 + b)n/p + 4(t+ u)n/

−8 n/p·q/nq yKk ( 1
ǫ + 3 − 2b)n/p

4 n/p·q/n QyKk ( 1
ǫ + 3 − 2b)n/p

12 − 12ǫ −16 + 16ǫ k/n·k/nq yKk 3
8
p/+ 1

4
n/p + 1

4
n/∗p

4 − 4ǫ k/n·k/n QyKk 5
8
p/+ ( 1

2ǫ + 3
4
)n/p − tn/+ 1

4
n/∗p

8 − 8ǫ 8 k/n·k/nqQy k ( 1
6ǫ + 1

9
− 1

3
c)p/− ( 1

6ǫ + 5
18

)n/p + 1
3
tn/

−4 + 4ǫ
(m2 + p2)k/n·k

nqQyKk
un/

−4 −2
(m2 + p2)n/

nqQy k
4un/

12 − 12ǫ q/n·k/nqQy k ( 1
4ǫ + 1

8
− 1

2
c)p/

−8 8 q/n·k/nq yKk 1
4
p/+ ( 1

2ǫ − c)n/∗p

16 k/n·p/nq yKk n/∗p

−12 k/n·p/n QyKk n/∗p

−8 q/n·p/nq yKk ( 1
ǫ + 3 − 2b)n/∗p

4 q/n·p/n QyKk ( 1
ǫ + 3 − 2b)n/∗p

−8 −4 q/n·p/nqQy k 2h/+ ( 1
ǫ + 3)n/∗p
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